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Abstract 

Classic models of episodic memory propose that retrieval relies on the reactivation of previous 
perceptual representations in sensory cortex, a phenomenon known as cortical reinstatement. 
Supporting this idea, visual memory retrieval has been shown to evoke activity patterns in 
visual areas similar to those during encoding. However, recent work suggests that memory 
responses systematically diverge from perceptual ones, challenging this idea. Critically, these 
studies have focused on highly trained memories, leaving open whether similar effects arise in 
more naturalistic, single-shot memory scenarios, which are hallmarks of episodic memory. Here, 
we used fMRI and population receptive field (pRF) modeling to test whether spatially tuned 
memory responses emerge in early visual cortex after a single encoding event. We scanned 19 
participants with fMRI while testing them on their recognition and spatial recall of peripheral 
objects seen only once. We observed spatially tuned responses in early visual cortex during 
both recognition and recall, even though spatial location was never explicitly probed during 
recognition. These responses were better tuned for successfully remembered items, indicating 
a relationship between neural tuning and behavioral memory performance. Moreover, spatial 
tuning at encoding predicted subsequent memory: responses for subsequently remembered 
objects were stronger near the object location and suppressed elsewhere, relative to forgotten 
items. Taken together, our findings show that a single experience is sufficient to enable spatially 
tuned reactivation in early visual cortex when remembering an item. Further, our results 
indicate an important role, during both encoding and retrieval, for early visual cortex 
representations in successful episodic memory. 
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Introduction 

Episodic memory allows humans to bring to mind the details of a previous experience. In 
contrast with other learning and memory systems, episodic memory can encode events that 
have occurred only once and retrieve them with high fidelity. How does the brain achieve this? 
Dominant models suggest that, at retrieval, pattern completion in the hippocampus leads to 
the reactivation of neural populations in sensory cortex that were active during the initial 
encoding of the experience, albeit at a weaker level (Johnson et al., 2009; Polyn et al., 2005; 
Wheeler et al., 2000). This phenomenon is referred to as cortical reinstatement or reactivation. 
Indeed, patterns of visually-evoked activity can be used to decode the contents of visual 
memory in visual areas as early as area V1, suggesting shared patterns of activity during 
encoding and retrieval (Bosch et al., 2014; Naselaris et al., 2015; Vo et al., 2022).   Recent work 
has shown that lurking beneath the similar patterns of activity during encoding and retrieval, 
there are also some striking systematic differences. For instance, studies using population 
receptive field (pRF) modeling techniques have shown that the spatial memory responses in 
visual cortex are more broadly tuned than their perceptually evoked counterparts, particularly 
in V1 (Favila et al., 2022; Woodry et al., 2025). Changes in tuning for other visual features, such 
as spatial frequency, have also been reported (Breedlove et al., 2020). These findings are 
incompatible with the standard model of cortical reinstatement, as the differences in tuning 
could be separated from the differences in response amplitude. Instead, these studies indicate 
that compression of sensory information during the encoding process places constraints on the 
precision of memory representations and their correspondence to perceptual representations, 
particularly in the earliest visual areas.  

These differences between perceptual and memory representations, while robust, have 
been studied in a limited range of task contexts, raising questions about their generalizability. 
In particular, these effects have been reported exclusively in studies that relied on 
highly-trained associations. Highly-trained associations offer many advantages, such as high 
task performance and signal-to-noise ratio. However, they do not engage the episodic memory 
system’s most important property: the ability to store a unique, once-experienced event. In 
addition, highly-trained memories may look different from single-shot memories in visual 
cortex. In particular, it’s possible that spatially tuned responses during recall aren’t present 
immediately, but instead emerge only after repeated precise retrieval practice. This may be 
especially true in V1, where recall and imagery effects have been more inconsistent than in 
higher visual areas  (Bridge et al., 2012). Another possibility is that repeated retrieval 
‘fast-tracks’ memory consolidation processes that transform memory representations, leading 
to changes in the memory response that accumulate with retrieval practice (Antony et al., 
2017). Thus, a thorough investigation of the differences between perceptual and memory 
representations in human visual cortex for once-studied memories is needed.  
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To address these concerns, we sought to extend prior work on representational 
differences between perception and memory to a single shot memory paradigm, where we 
could ask: Can spatially tuned memory responses be observed in early visual cortex for items 
seen just once? We also addressed several secondary questions of interest. First, we assessed 
whether spatial tuning is related to retrieval demands by comparing two tasks: recognition, 
where location information is not explicitly probed, and spatial recall, where it is. Second, 
because single-shot memory paradigms introduce variability in memory behavior, we asked 
whether spatial tuning is associated with memory performance. Finally, we explored whether 
our techniques could recover differences in spatial tuning during encoding that predicted 
subsequent memory. To answer these questions, we scanned human subjects across three 
tasks. First, they were shown trial-unique objects in the periphery (study). Second, they were 
asked to identify new vs. old objects (recognition). Last, they were asked to indicate old 
objects' original locations (recall). We used pRF models to map responses in early visual cortex 
to visual space across the three different tasks. We find that a single encoding event is sufficient 
to produce spatially tuned memory responses in early visual cortex, even when spatial location 
is not explicitly probed. Moreover, these spatially tuned responses map on to memory 
behavior, where we find better tuned responses for objects whose locations are successfully 
remembered during recall. We also find effects of spatial tuning at encoding on subsequent 
memory, where responses for subsequently remembered objects are greater near the object’s 
location and reduced at farther away locations relative to subsequently forgotten items. 
Collectively, these findings reveal that early visual cortex representations support successful 
episodic memory during both single-shot encoding and retrieval.  

Materials and Methods 

Subjects 
20 human subjects (12 females, 25-47 years old) were recruited to participate in the experiment 
and were compensated for their time. One participant was excluded from the analysis because 
they misunderstood the instructions for providing behavioral responses during the memory 
task. An initial group of 5 subjects were used for pilot analyses while the remaining 14 were 
used to validate those analyses. We report here the analyses across all 19 subjects. Subjects 
were recruited from the New York University community and included the authors S.F. and J.W. 
Subjects other than the authors were naive to the study’s purpose. All subjects gave written 
informed consent to procedures approved by the New York University Institutional Review 
Board prior to participation. All subjects had no MRI contraindications, normal color vision, and 
normal or corrected-to-normal visual acuity.  
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Stimuli 
Object stimuli 
This experiment involved testing memory retrieval after a single encoding experience. 
Therefore, this required the use of a large number of easily recognizable cues with a low 
probability of confusion. Based on subjective ratings from six subjects not included in the pilot 
or main experiment, we identified 480 everyday object images from a publicly available dataset 
that were recognizable in the near periphery (BOSS dataset, (Brodeur et al., 2010). For each set 
of the three tasks (study, recognition, location), 48 small images of unique objects were 
sampled without replacement from the 480 images. This produced ten non-overlapping 
subsets of images — one for each set of three tasks. Within each subset, half (24) were 
randomly selected without replacement to be used in both the study and location tasks, while 
the total (48) were used in the recognition task.  

On each trial, a small image of one of these objects was shown in either the near 
periphery (for study trials) or at fixation (for recognition and location trials). During the study 
task, objects were presented at one of four equispaced peripheral locations around the visual 
field (45°, 135°, 225°, and 315°) at 2° eccentricity from a central fixation point, spanning 2.5° of 
visual angle. For the recognition and location tasks, objects were presented at fixation, 
spanning 1.5° visual angle.  

A circular guide spanned the visual field, centered at fixation. This guide consisted of 
three concentric white circles increasing in radii (2°, 4°, and 6° eccentricity), a horizontal and 
vertical line that each bisected the circles, and a small white dot at fixation. Object stimuli were 
presented on top of this guide to provide an external spatial frame of reference. 
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Figure 1. Experimental design 
Subjects participated in two fMRI sessions with 15 scans each: study, object recognition, and 
spatial recall scans, repeated five times (right). The study and recall scans each included 24 
trials corresponding to 24 objects, in random order. Recognition scans contained the same 24 
objects, with an additional 24 new objects, each shown at fixation in random order. In study 
trials, subjects were briefly shown objects in one of four locations in the near periphery and 
asked to indicate whether they were  larger or smaller than a shoebox in real life. In recognition 
trials, subjects were shown both old (studied) and new objects at fixation, and asked to indicate 
whether they were old or new. In recall trials, subjects were only shown old objects at fixation, 
and were asked to indicate in which of the four possible locations was the object originally 
presented. 

Experimental Procedure 
The experiment cycled through sets of three scans: study, recognition, location. These sets 
were repeated five times per scan session (Figure 1).  Each subject participated in two scan 
sessions, for a total of 30 scans (10 per task). Study and location scans consisted of 24 trials, 
one for each object, in random order. Recognition scans consisted of 48 trials, one for each 
object from the prior study task (old), and another 24 objects not seen before in the 
experiment (new) — all in random order. Objects in the study task were randomly assigned to, 
and presented in one of, four peripheral locations. This resulted in a total of 240 trials each for 
study and location tasks, and 480 trials for recognition tasks, across both scan sessions. 
Behavioral responses on each trial were collected using a four-response button box. Subjects 
were instructed to maintain central fixation for all tasks. An EyeLink 1000 Plus eye tracker was 
used to collect gaze position data and ensure fixation. The eye tracker was mounted onto a rig 
in the magnet bore that holds the projection screen. 

For each study trial, an object was presented in the periphery for 2 seconds. This was 
followed by an inter-trial interval lasting 4 to 7 seconds. Subjects were instructed to indicate 
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whether the peripherally presented object was smaller than a shoebox (1), larger than a 
shoebox (2), or unrecognizable (3).  

For each recognition trial, an old (from the prior study task) or new object was 
presented at fixation for 2 seconds. This was followed by an inter-trial interval lasting 4-7 
seconds. Subjects were asked to indicate whether the centrally presented object was old (1), or 
new (2).  

For each location trial, an old object (from the prior study task) was presented at fixation 
for 2 seconds. This was followed by an inter-trial interval lasting 4-7 seconds. Subjects were 
asked to indicate the object’s original location from the prior study task (1: upper right, 2: lower 
right, 3: lower left, 4: upper left).  

Retinotopic mapping procedure 
Each participant additionally underwent 10-12 retinotopic mapping scans in a separate scan 
session. The stimuli and procedures for the retinotopic mapping session followed those used in 
Himmelberg et al. (2021), summarized briefly here. Each scan involved contrast patterns 
presented within bar apertures (1.5° width), which swept across the visual field within a 
12°-radius circle. There were 8 bar sweep types in total, comprising 4 diagonal directions and 4 
cardinal directions. Each bar sweep took 24s to complete: cardinal sweeps took 24 s to traverse 
the full extent of the circular aperture; diagonal sweeps took 12 seconds to move to the 
halfway point, subsequently followed by 12 second long blank periods. Each functional scan 
comprised 8 sweeps, for a total of 192 seconds. The contrast patterns featured pink noise 
(grayscale) backgrounds with randomly sized and placed items, updated at 3 Hz. Participants 
were instructed to press a button whenever the fixation dot changed color, which occurred 
approximately once every three seconds. These contrast patterns were originally implemented 
by Benson et al. (2018). 

MRI Acquisition 
A 3T Siemens Prisma MRI system and a Siemens 64-channel head/neck coil was used to collect 
functional and anatomical images at the Center for Brain Imaging at New York University. We 
obtained functional images using a T2*-weighted multiband echo planar imaging (EPI) 
sequence with whole-brain coverage (repetition time = 1 s, echo time = 37 ms, flip angle = 
68º, 66 slices, 2 x 2 x 2 mm voxels, multiband acceleration factor = 6, phase-encoding = 
posterior-anterior). To estimate and correct susceptibility-induced distortions in the functional 
EPIs, we collected spin echo images with both anterior-posterior and posterior-anterior 
phase-encoding. Additionally, for each of the 20 subjects, we acquired one to three 
whole-brain T1-weighted MPRAGE 3D anatomical volumes (.8 x .8 x .8 mm voxels). 

MRI Processing 
We used pydeface (https://github.com/poldracklab/pydeface) to deface and anonymize all 
original MRI data (DICOM files). We then used the Heuristic Dicom Converter  (Halchenko et 
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al., 2018) to convert this data to NIFTI and organized the files into the Brain Imaging Data 
Structure format (K. J. Gorgolewski et al., 2016). We then preprocessed the data using 
fMRIPrep 20.2.7 (Esteban et al., 2018, 2019), which is based on Nipype 1.7.0 (K. Gorgolewski et 
al., 2011; K. J. Gorgolewski et al., 2018). 

Anatomical data preprocessing.  
The following sections on anatomical and functional data preprocessing are provided by the 
fMRIPrep boilerplate text generated by the preprocessed scan output.  

Each of the one to three T1w images was corrected for intensity non-uniformity with 
N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants et al., 2008). 
The T1w-reference was then skull-stripped with a Nipype implementation of the 
antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain 
tissue segmentation of cerebrospinal fluid, white-matter and gray-matter was performed on the 
brain-extracted T1w using fast (FSL 5.0.9, (Zhang et al., 2001)). A T1w-reference map was 
computed after registration of the T1w images (after intensity non-uniformity-correction) using 
mri_robust_template (FreeSurfer 6.0.1, (Reuter et al., 2010)). Brain surfaces were reconstructed 
using recon-all (FreeSurfer 6.0.1, (Dale et al., 1999)), and the brain mask estimated previously 
was refined with a custom variation of the method to reconcile ANTs-derived and 
FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (Klein, 2017).  

Functional data preprocessing.  
For each of the 30 BOLD runs found per subject (across all tasks and sessions), the following 
preprocessing was performed. First, a reference volume and its skull-stripped version were 
generated by aligning and averaging a single-band reference. A B0-nonuniformity map (or 
fieldmap) was estimated based on two EPI references with opposing phase-encoding 
directions, with 3dQwarp (Cox & Hyde, 1997). Based on the estimated susceptibility distortion, 
a corrected EPI reference was calculated for a more accurate co-registration with the 
anatomical reference. The BOLD reference was then co-registered to the T1w reference using 
bbregister (FreeSurfer) which implements boundary-based registration (Greve & Fischl, 2009). 
Co-registration was configured with six degrees of freedom. Head-motion parameters with 
respect to the BOLD reference (transformation matrices, and six corresponding rotation and 
translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 
5.0.9, (Jenkinson et al., 2002)). BOLD runs were slice-time corrected to 0.445s (0.5 of slice 
acquisition range 0s-0.89s) using 3dTshift from AFNI 20160207 (Cox & Hyde, 1997). First, a 
reference volume and its skull-stripped version were generated using a custom methodology of 
fMRIPrep. The BOLD time-series were resampled onto the fsnative surface. The BOLD 
time-series (including slice-timing correction) were resampled onto their original, native space 
by applying a single, composite transform to correct for head-motion and susceptibility 
distortions. These resampled BOLD time-series will be referred to as preprocessed BOLD. All 
resamplings can be performed with a single interpolation step by composing all the pertinent 
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transformations (i.e. head-motion transform matrices, susceptibility distortion correction, and 
co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 
performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 
minimize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded (surface) 
resamplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al., 2014), mostly 
within the functional processing workflow. For more details of the pipeline, see the section 
corresponding to workflows in fMRIPrep’s documentation. 

General linear models 
From each subject’s surface based time series, we used GLMSingle (Prince et al., 2022) to 
estimate the neural pattern of activity during the 2 second stimulus presentations for each trial. 
GLMsingle first fits to each vertex’s time series an optimal response function from a bank of 20 
candidate hemodynamic response functions (Natural Scenes Dataset, (Allen et al., 2021)). 
Second,  noisy vertices from the are identified from the data(defined by negative R2) and then 
used to estimate noise regressors. This step iteratively uses principal component analysis to 
derive the noise regressors, an optimal number of noise regressors is chosen and then 
projected out of the time series' data. Third, fractional ridge regression is used to improve the 
robustness of single-trial beta estimates, particularly useful here as our design relies on 
single-trial encoding, recognition, and retrieval of object stimuli.  

We constructed three separate design matrices to model the BOLD time series using 
GLMSingle, one for each of the three tasks. Each of the three design matrices has a regressor 
corresponding to the object’s true location (‘target-aligned’). Recognition design matrices had 
an additional regressor for ‘new’ objects.  

Population receptive field models 
Data from the retinotopy session were used to fit a population receptive (pRF) model to each 
vertex on the cortical surface, as described by Himmelberg et al. ((Himmelberg et al., 2021); 
section 2.6). To briefly summarize, we fit a circular 2D-Gaussian linear pRF to each surface 
vertex’s BOLD time series, averaged across identical runs of the bar stimulus. These fits were 
implemented with Vistasoft software (Dumoulin & Wandell, 2008), in conjunction with a 
wrapper function to handle surface data (https://github.com/WinawerLab/prfVista). Gaussian 
center (x, y) and standard deviation (𝜎) comprised the pRF model parameters. 

Visual field map definitions 
We used the visual tool cortex-annotate (https://github.com/noahbenson/cortex-annotate), 
which is built on neuropythy software (Benson & Winawer, 2018), to draw and define visual field 
maps for each subject. To do so, we traced the polar angle reversals on each subject’s cortical 
surface. We followed common heuristics to define four maps spanning early visual cortex: V1, 
V2, V3 (Benson et al., 2022; Himmelberg et al., 2021). We then defined experiment-specific 
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regions of interest for each visual field map. To do this we excluded vertices whose variance 
explained was less than 10% and whose pRF centers were outside one 𝜎 of 2° (the target 
eccentricity in the experiments). For example, a vertex with a pRF center at 1° and pRF size (𝜎) 
of 0.5° would be excluded, but a vertex with pRF center at 3° and pRF size of 1.5° deg would 
be included. We restricted vertices in our analyses this way to examine polar angle activation 
profiles, described in the next section. These mapping estimates are solely based on the 
retinotopy scans, and are therefore independent of the main experiment.  

Quantifying behavioral performance at recognition and recall 
Object recognition 
During the recognition task, subjects responded with either ‘new’ or ‘old’ for objects presented 
at fixation. Half of these objects were present in the previous study task (‘old’), the rest ‘new’. 
Hits were classified as trials where previously seen objects were correctly identified as ‘old’. 
Misses were classified as trials where previously seen objects were incorrectly identified as 
‘new’. Correct rejections were classified as trials where new objects were correctly identified as 
‘new’. False alarms were classified as trials where new objects were incorrectly identified as 
‘old’. For each scan, the total number of hits were divided by the total number of ‘old’ objects, 
to get hit rate as a percentage. Likewise, the total number of false alarms was divided by the 
total number of ‘new’ objects to get the false alarm rate as a percentage. Miss and correct 
rejection rates were calculated as the complement of the hit and false alarm rates, respectively.  

Spatial location recall 
During the location task, subjects reported which of four locations the object presented at 
fixation originally appeared at (from the study task). Trials were classified as accurate or 
inaccurate if the reported location matched that of the original location, or source location, of 
the object, respectively. Therefore, because all objects shown were ‘old’ objects that had 
appeared within the study task in one of four locations, the chance level was at 25%. For each 
scan, the total number of accurate responses were divided by the number of trials to get mean 
accuracy.  

Analyses quantifying spatial tuning in visual cortex at encoding and retrieval 
We computed polar-angle activation profiles for each task (study, recognition, location) across a 
region of interest comprising visual maps V1, V2, and V3. To do so, we first obtained response 
amplitudes from the outputs of GLMsingle for each vertex on the cortical surface and each trial. 
PRF mapping, which was conducted in a separate fMRI session, returned visual field 
coordinates for each vertex. We excluded vertices not included in the ROI definitions outlined 
above. We further restricted trials by several criteria: for all tasks, we only included trials where 
behavioral responses were provided. In the recognition task, we only included trials that were 
classified as ‘hits’ (subject reported ‘old’ when viewing an ‘old’ object). Some analyses further 
restricted trials across all tasks to those whose object locations were accurately reported in the 
recall task. We binned the response amplitudes for the remaining trials and vertices by the 
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angular distance between each vertex’s preferred polar angle and the source location for that 
object. This binning by angular distance allows for averaging trials across the four peripheral 
source locations. This produces an activation profile as a function of distance from the object’s 
source location; an activation profile for each subject and task. Each activation profile is then 
normalized by dividing by the vector length of the perceptually evoked activation profile (from 
the study task) for the corresponding subject. 

Because each subject contributed a different number of trials to each activation profile, 
we performed two steps to meaningfully aggregate the activation profiles across subjects. First 
we averaged the normalized activation functions across subjects, weighted by the fraction of 
trials that each subject contributed towards the group average. We then preserved meaningful 
units by rescaling each activation profile by the average vector lengths from the study task. 
Each of the resulting averaged activation profiles peaked near 0°, where values decreased 
moving away from the peak response. We therefore fit a Von Mises distribution to the averaged 
activations as a function of angular distance to the source location, θsource (Eq. 1).  

  

Eq. 1 

From each of these fits we estimated the peak location, the amplitude (peak to trough), 
and the width (full-width-at-half-maximum; FWHM). We repeated these analyses, bootstrapping 
across subjects with replacement 10,000 times to obtain 68% and 95% confidence intervals for 
each of these three spatial tuning parameter estimates.  

Resampling statistics 
We analyzed bootstrapped data to infer spatial tuning properties as a function of condition and 
of other trial-level factors. Statistics reported in this paper are derived from these bootstrapped 
analyses. We report the mean and confidence intervals (CI) obtained from these analyses to 
assess our main claims. We report the 95% CI (corresponding to ±2 standard deviations of a 
normal distribution) when drawing comparisons between a measurement and a fixed value.  
When comparing two estimates, we instead report the 68% CIs (corr. ±1 standard deviation). 

 

Software 
Model fitting, data visualization, and statistical quantification for all analyses described in this 
paper were made using matplotlib 3.5.2 (Hunter, 2007), nibabel 3.2.2 (Brett et al., 2022), 
pandas 1.4.2 (The pandas development team, 2024), scikit-learn 1.0.2 (Pedregosa et al., 2011), 
scipy 1.8.0 (Virtanen et al., 2020), and seaborn 0.11.2 (Waskom, 2021).  
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Results 

We tested whether a single visual event is sufficient for producing spatially tuned memory 
responses in visual cortex during two kinds of episodic memory retrieval: object recognition 
and spatial location recall. We also tested whether spatial tuning in visual cortex differs 
between events where item locations were later remembered or forgotten.  

Subjects performed above chance at object recognition and spatial location recall 
We first asked whether subjects performed above chance on both the object recognition and 
the spatial location recall task. In the object recognition task, we computed the hit rate 
(percentage of ‘old’ objects identified as ‘old’) and the false alarm rate (percentage of ‘new’ 
objects misidentified as ‘old’) for each subject. An equal number of objects presented during 
the object recognition task meant chance performance was at 50%. Subjects achieved an 
average hit rate of 90% (mean = 0.899, 95 CI [0.87, 0.92]), and an average false alarm rate of 
7% (mean = 0.07, 95 CI [0.05, 0.09]), indicating performance well beyond chance level (Figure 
2A). Hit and false alarm rates remained stable across scans (Figure 2C). 

In the spatial location recall task, we computed the average accuracy for each subject. 
Because the task had only four options — corresponding to the four potential locations objects 
could be presented at during the study task —  chance performance was at 25%. Subjects 
achieved an average accuracy of 69% (mean = 0.685, 95 CI [0.63, 0.74], Figure 2B). Subject 
performance improved the most from the first to the second block, but then leveled off across 
the rest (Figure 2D). 
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Figure 2. Behavioral performance on object recognition and spatial location recall tasks. 
A) Subject-level performance on the object recognition task. Across all subjects (individual 
points), hit rate (solid pink) and false alarm rate (hollow pink) were well beyond chance (dotted 
gray line). Black horizontal bars indicate mean hit rate (left) and false alarm rate (right). B) 
Subject-level performance on the spatial recall task. Across all subjects (individual orange 
squares), mean performance was well above chance (dotted gray). Black horizontal bar 
indicates subject group mean. C) Group-level average performance on the object recognition 
task across blocks. Hit rate (solid pink) and false alarm rate (dashed pink) were stable and well 
beyond chance (dotted gray) across all blocks and the two sessions. Error bars indicate 95% CI 
obtained from 1000 bootstraps across subjects. D) Group-level average performance on the 
spatial recall task across blocks. Mean performance was stable and well beyond chance (dotted 
gray) across all blocks and the two sessions. Error bars indicate 95% CI obtained from 1000 
bootstraps across subjects.  

 

A single viewing is sufficient for spatially tuned memory responses in early visual 
cortex 
Confident that our subjects could recognize objects and retrieve their original location after a 
single viewing, we next asked whether retrieving these object memories could produce activity 
in visual cortex spatially tuned to the object’s source location. We tested this hypothesis by 
remapping estimates of brain activity from the surface of early visual cortex (V1-V3) to visual 
space. From these we computed polar angle activation profiles for each visual map and task, 
and quantified each profile’s spatial tuning by computing its peak location, amplitude, and 
tuning width.  

Across each task, activity in V1-V3 in each task was spatially tuned to the object’s 
peripheral location (study = -1°, 95 CI [-2°, 0.5°]; recognition = -9°, 95 CI [-31°, 9°]; recall = 
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-13°, 95 CI [-47°, 22°]; Figure 3A). Though a Von Mises function fit to the response during study 
captured more of the variance in activity compared to fits to responses during recognition 
(mean R2 diff = 0.29, 95 CI [0.07, 0.65]) and during recall (mean R2 diff = 0.4, 95 CI [0.12, 0.81]), 
the fits still captured most of the variance in each task (study R2: 0.99, recognition R2: 0.78, 
recall R2: 0.73, Figure 3B). The fact that each memory response produced activity that clearly 
peaks near the studied location (0°) confirms our hypothesis that a single encoding event is 
sufficient to produce spatially tuned responses in early visual cortex during memory retrieval. 
Interestingly, this was observed during both recall and recognition tasks, even though location 
was not explicitly relevant for the recognition judgment.  

We next asked how the spatial tuning parameters of the memory retrieval responses 
compared to those from encoding. First, we compared the estimates of peak location: we 
found that, compared to the encoding response, the absolute error (distance of the peak 
location to 0°) of the memory response was larger during both recognition (mean diff = 10°, 95 
CI [-1°, 30°]) and recall (mean diff = 16°, 95 CI [-1°, 47°]; Figure 3C). Second, the response at 
encoding also had a substantially larger amplitude than the responses during recognition 
(mean diff = 0.86, 95 CI [0.71, 1.03] ) and during recall (mean diff = 0.87, 95 CI [0.72, 1.03]; 
Figure 3D). Lastly, the responses during both memory retrieval tasks were more broadly tuned 
compared to the response at encoding (study = 81°, 68 CI [79°, 83°], recognition = 122°, 68 CI 
[94°, 138°]; recall = 162°, 68 CI [107°, 178°]; Figure 3E), consistent with our prior work (Favila et 
al., 2022; Woodry et al., 2025). 
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Figure 3. Single-shot memory responses in visual cortex are tuned to encoded location. 
A) Polar angle activation profiles fit to brain activity in early visual cortex. Shaded region 
indicates 68% confidence interval across subjects. While the spatial tuning of responses at 
encoding are predictably good, the responses during both retrieval tasks were remarkably 
tuned to the studied object location, even though the object was only shown at that location 
once. B-E) Estimates of tuning quality observed during single-trial encoding, recognition, and 
recall. Error bars indicate 68% bootstrapped confidence intervals across subjects. B) Variance 
explained for each task’s Von Mises fit. While noisier than at encoding, the fits to memory 
responses at retrieval accounted for at least 70% of the variance. C) Absolute distance between 
peak location and object source location. Responses at retrieval were less accurate than 
responses at encoding, but were still reasonably aligned to the object’s source location. D) The 
amplitude (peak to trough) of responses at retrieval were less than a tenth of those at 
encoding, yet comfortably above zero. E) The tuning width of responses at memory retrieval 
were characteristically broader than at encoding, consistent with previous studies. 
 

Memory responses in early visual cortex track locations of remembered objects 
To test if the presence of spatially tuned memory responses in visual cortex predicts successful 
recall, we grouped trials in each memory task by whether the object’s location was later 
remembered or forgotten (behavioral report during recall, Figure 4A), recomputing the polar 
angle activation profile for each (Figure 4B). These profiles reveal clear spatial tuning for the 
memory response, both during recognition and recall, when the object’s location is successfully 
remembered. In contrast, the memory response is less tuned for trials where the object’s 
location is forgotten, particularly during the recall task. Indeed, when object location is 
forgotten, the estimates of peak location are further away from the target when compared to 
trials where the object location was successfully remembered (recognition mean diff = 43°, 95 
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CI [-7°, 107°]; recall mean diff = 90°, 95 CI [21°, 173°]; Figure 4C Right). We also find that the 
variance explained in model fits tends to be somewhat but not reliably lower during both 
recognition (mean diff = -0.21, 95 CI [-0.69, 0.32]) and recall (mean diff = -0.29, 95 CI [-0.77, 
0.27]; Figure 4C Left). These results show that accurate spatial tuning of memory responses in 
early visual cortex  is associated with accurate spatial recall. 

While the exclusion of forgotten trials does not impact the tuning of the recognition 
response, it does marginally improve some aspects of the spatial tuning of the recall response 
(R2 diff = 0.12, 95 CI [-0.02, 0.31]; absolute error diff = -8°, 95 CI [-32°, 5°]; amplitude diff = 
0.02, 95 CI [0.01, 0.03]; width diff = -29°, 95 CI [-87, 27°]). One may be inclined to propose, 
then, that the observation of broader tuning during memory vs. encoding for all trials (Figure 
3E) could instead be due to the inclusion of inaccurately retrieved memory responses. 
However, when we compare the memory responses for only remembered objects to the 
response at encoding, we find that this is not the case: response tuning remains broader during 
both retrieval tasks than during the study task (study = 81°, 68 CI [79°, 83°], recognition = 122°, 
68 CI [100°, 140°]; recall = 133°, 68 CI [97°, 151°]).  
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Figure 4. Spatially-tuned memory responses in early visual cortex track recall success 
A) Schematic for grouping subsequently remembered/forgotten trials across tasks. Trials in 
each task (study, recognition, and recall) are assigned to the ‘remembered’ group if the object’s 
location is subsequently reported correctly during the recall task. Trials are deemed ‘forgotten’ 
if location is reported incorrectly during the recall task. B) Polar angle activation profiles fit to 
brain activity in early visual cortex, split by whether the object’s location was later remembered 
(pink, orange) vs. forgotten (gray) at recall. Clearer tuning to the object’s source location for 
subsequently remembered object locations, especially for the recall task. C) Variance explained 
(left) and absolute peak location error (right) for fits to memory responses split by whether the 
object’s location was later remembered vs. forgotten. Error bars denote standard deviation of 
the bootstrapped difference in R2 (left) and angular error in peak location (right) between 
remembered and forgotten groups. While variance explained appears to drop slightly, absolute 
error in peak location is larger for the forgotten than for the remembered trials. 
  
Spatial tuning at encoding predicts subsequent memory 
Objects whose locations were later forgotten during the recall task may differ in how they were 
encoded, reflected by differences in cortical activity during stimulus encoding. Previous 
research has generally failed to observe this subsequent memory effect in early visual cortex 
(Kim, 2011). However, because early visual cortex is highly spatially selective, standard 
univariate tests which pool evoked activity across early visual areas likely average spatially 
localized differences in the response at encoding. Here our encoding model-based analyses 
provide an advantage. Our analyses respect the spatial selectivity in visual cortex by mapping 
cortical responses to visual space and aligning these responses to the spatial location of 
stimulus, preserving the spatial selectivity across encoding trials. We therefore hypothesized 
that we could reveal any subsequent memory effects in early visual cortex by grouping study 
trials according to whether the object’s location was later forgotten or remembered.  
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We tested this hypothesis by comparing the activation profiles between the 
remembered and forgotten groups during the study task (Figure 5A). From these initial 
comparisons we find  larger responses at encoding in each visual area for trials whose object 
locations were later remembered than for those later forgotten. Indeed, we find consistently 
larger amplitude estimates across early visual cortex for remembered vs. forgotten trials (mean 
diff = 0.11% signal change, 95 CI [0.01, 0.21]). Additionally, we find that this subsequent 
memory effect is spatially selective: by taking the difference of binned activations between 
remembered and forgotten trials, we observe 1) a gain in the response localized near the 
target, and 2) a reduction of the surround response (Figure 5C). This effect on the population 
tuning response in early visual cortex is consistent with work on attention (Tünçok et al., 2024), 
raising the possibility that attentional signals could be modulating the response at encoding, 
thereby improving memory of the stimulus. 

 

Figure 5. Spatial tuning in early visual cortex at encoding predicts subsequent recall 
A) Polar angle activation profiles fit to brain activity across early visual cortex at encoding 
(study), grouped by whether the encoded object’s location was later remembered (blue) or 
forgotten (gray) at recall. Shaded region indicates 68% confidence interval across subjects.  B) 
Amplitude estimates (peak to trough) at encoding for remembered and forgotten groups. Error 
bars indicate one standard deviation of the amplitude difference between the two groups 
across bootstraps. C) Differences in BOLD response between remembered and forgotten 
groups as a function of angular distance to the target. Error bars indicate one standard 
deviation of the bootstrapped differences between the two groups. 
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Discussion 

We measured the spatial tuning of visual cortical responses during object encoding, 
recognition, and recall — with only a single encoding event for each stimulus. We 
demonstrated that a single encoding experience is sufficient to produce spatially tuned 
memory responses in visual cortex during later memory retrieval. We further showed that these 
spatially tuned responses do not require spatial information being explicitly probed, indicating 
that such responses can arise spontaneously. Lastly, we found that successful spatial recall is 
associated with both a) the presence of spatially tuned responses in visual cortex during recall, 
and b) changes to spatial tuning during encoding – specifically, enhanced responses near the 
object location and reduced responses elsewhere. 

Our findings advance previous work using encoding models to study memory 
reactivation (Favila et al., 2022; Favila & Aly, 2023; Woodry et al., 2025). Here, we demonstrate 
that a single encoding event is sufficient to generate spatially specific responses in early visual 
cortex during retrieval. This contrasts with prior studies that have relied on highly practiced 
stimulus-response associations, often involving many rounds of retrieval practice and/or 
feedback-based learning (Bosch et al., 2014; Favila et al., 2022; Vo et al., 2022; Woodry et al., 
2025). While frequent practice is useful for generating high levels of performance, it does not 
engage the episodic memory system’s core function: storing and retrieving information about 
unique, once-experienced events. By showing that spatially tuned responses can be observed 
in early visual cortex after a single viewing, our results suggest that memories are reflected in 
early sensory regions even in the absence of training or repetition.  

Strikingly, spatially tuned responses in visual cortex emerged even during recognition, 
when spatial location was not relevant to the task. This suggests that reactivation of perceptual 
representations can sometimes occur even in the absence of explicit retrieval demands for 
spatial information. Such spontaneous reinstatement could imply that memory retrieval involves 
the reconstruction of a richer, more complete representation than is strictly required for task 
performance, or that other regions besides early visual cortex align these representations with 
task demands (Favila et al., 2018; Kuhl et al., 2013; Kwak & Curtis, 2022). However, it’s also 
important to note that participants in our experiment knew that they would ultimately be tested 
on object locations, and thus may have been strategically recalling this information in 
preparation for this later task. Future studies will need to further characterize how reactivation 
interacts with retrieval demands, for example with a surprise recall task. 

Our results further revealed that the presence and quality of spatial tuning in early visual 
cortex were linked to recall success. During recall, spatially tuned responses were robust for 
items whose locations were successfully remembered and disorganized for items whose 
locations were forgotten. This pattern of data is consistent with prior studies that have linked 
decoded memory content to recall behavior (Gordon et al., 2014; Kuhl et al., 2011; Polyn et al., 
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2005). However, decoding methods are limited by their inability to separate out the effects of 
signal-to-noise-ratio and the precision of the memory response — any combination of which 
would decrease decoder performance. Instead, our use of encoding models allows us to 
separately characterize the amplitude, precision (width), and accuracy (peak location) of the 
memory response as it relates to successful recall. During recognition, we saw more limited 
tuning differences between successfully recognized objects whose spatial location was later 
recalled and successfully recognized objects whose spatial location was later forgotten. The 
presence of some tuning for subsequently forgotten items could reflect forgetting of some 
locations that were reactivated during recognition prior to the spatial recall test.  

Interestingly, we also found that tuning differences related to recall were evident at 
encoding: subsequently remembered items elicited stronger responses near the object’s 
location and weaker responses elsewhere compared to subsequently forgotten items. These 
encoding-related differences could reflect the operation of attentional mechanisms that 
enhance the neural representation of relevant information (Kensinger et al., 2003; Uncapher & 
Rugg, 2009; Uncapher & Wagner, 2009). While we did not directly manipulate attention in this 
study, limiting our ability to draw strong conclusions about it here, there are several reasons for 
our interpretation. First, selective attention is known to modulate activity in early visual cortex 
in a similar manner to what we observed (Ling et al., 2015; Tootell et al., 1998; Tünçok et al., 
2024). Second, attention has been repeatedly implicated in promoting memory encoding 
(Craik et al., 1996; Uncapher & Wagner, 2009; Wager et al., 2004). Notably, prior work on 
subsequent memory effects has not typically implicated early visual cortex (Kim, 2011). 
However, it is important to note that most papers look for univariate differences present across 
entire regions of interest. Here, we see small, but robust, subsequent memory effects at 
specific visual field locations which change on each trial, and which would be obscured by 
averaging over all of early visual cortex.  

Collectively, this work makes progress on characterizing memory reactivation in human 
visual cortex in a single-shot encoding paradigm that echoes the demands of real world 
episodic memory. We demonstrate a role for early visual cortex in promoting successful 
encoding and retrieval of episodic memories in this context. 
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	Figure 3. Single-shot memory responses in visual cortex are tuned to encoded location. 
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	A) Schematic for grouping subsequently remembered/forgotten trials across tasks. Trials in each task (study, recognition, and recall) are assigned to the ‘remembered’ group if the object’s location is subsequently reported correctly during the recall task. Trials are deemed ‘forgotten’ if location is reported incorrectly during the recall task. B) Polar angle activation profiles fit to brain activity in early visual cortex, split by whether the object’s location was later remembered (pink, orange) vs. forgotten (gray) at recall. Clearer tuning to the object’s source location for subsequently remembered object locations, especially for the recall task. C) Variance explained (left) and absolute peak location error (right) for fits to memory responses split by whether the object’s location was later remembered vs. forgotten. Error bars denote standard deviation of the bootstrapped difference in R2 (left) and angular error in peak location (right) between remembered and forgotten groups. While variance
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	Figure 5. Spatial tuning in early visual cortex at encoding predicts subsequent recall 
	A) Polar angle activation profiles fit to brain activity across early visual cortex at encoding (study), grouped by whether the encoded object’s location was later remembered (blue) or forgotten (gray) at recall. Shaded region indicates 68% confidence interval across subjects.  B) Amplitude estimates (peak to trough) at encoding for remembered and forgotten groups. Error bars indicate one standard deviation of the amplitude difference between the two groups across bootstraps. C) Differences in BOLD response between remembered and forgotten groups as a function of angular distance to the target. Error bars indicate one standard deviation of the bootstrapped differences between the two groups. 
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