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Abstract 

 
Behaving adaptively requires selection of relevant memories and sensations and suppression of 
competing ones. We hypothesized that these mechanisms are linked, such that hippocampal 
computations that resolve competition in memory also shape the precision of sensory 
representations to guide selective attention. We leveraged fMRI-based pattern similarity, 
receptive field modeling, and eye tracking to test this hypothesis in humans performing a 
memory-dependent visual search task. In the hippocampus, differentiation of competing 
memories predicted the accuracy of memory-guided eye movements. In visual cortex, 
preparatory coding of remembered target locations predicted search successes, whereas 
preparatory coding of competing locations predicted search failures due to interference. These 
effects were linked: stronger hippocampal memory differentiation was associated with lower 
competitor activation in visual cortex, yielding more precise preparatory representations. These 
results demonstrate a role for memory differentiation in shaping the precision of sensory 
representations, highlighting links between mechanisms that overcome competition in memory 
and perception.  
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Introduction 

At any given moment, we are faced with multiple sensations, memories, and thoughts that 
compete to take control of our behavior. Behaving adaptively requires resolution of this 
competition, to focus on only those memories or external events that are relevant in the current 
context. Multiple cognitive domains, from perception to memory, have highlighted the necessity 
of selecting between competing representations for generating adaptive behavior. Yet, these 
aspects of cognition are largely studied separately, leading to assumptions that the way 
competition is resolved in memory is fundamentally different from how it is resolved in 
perception. An alternative possibility is that the computational principles that overcome 
competition in memory and perception are closely intertwined, such that mechanisms that 
resolve competition in memory also shape the precision of online perceptual behavior. 
 
Within the field of visual perception, it has long been appreciated that limited processing capacity 
requires humans to make moment-by-moment decisions about what information to attend to and 
what to ignore (Carrasco, 2011; van Moorselaar & Slagter, 2020). These competitive interactions 
have been well-characterized in behavior and within visual cortex, where attention is known to 
modulate the strength and precision of stimulus representations (McAdams & Maunsell, 1999; 
Somers et al., 1999; Liu et al., 2005; Sprague & Serences, 2013; Desimone & Duncan, 1995; 
Kastner & Ungerleider, 2000). Separately, within the field of episodic memory, a considerable 
amount of research has focused on the role of the hippocampus in differentiating similar 
memories such that competition between them is minimized. Both computational models 
(Norman et al., 2006; Ritvo et al., 2024) and numerous fMRI studies in humans (Hulbert & 
Norman, 2015; Schlichting et al., 2015; Favila et al., 2016; Chanales et al., 2017; Molitor et al., 
2020; Wanjia et al., 2021) have shown that the hippocampus can learn to represent competing 
memories more dissimilarly than non-competing memories, with this memory differentiation 
serving to reduce interference in behavior. Although competitive interactions in attentional 
selection and memory are typically studied independently and in separate parts of the brain, 
there is reason to expect that these mechanisms are linked via the hippocampus. Prior work has 
shown that the hippocampus is involved in online attentional behavior (Chun & Phelps, 1999; 
Hannula & Ranganath, 2009; Summerfield et al., 2006; Aly & Turk-Browne, 2016b; Córdova et al., 
2019; Ruiz et al., 2020), codes for gaze-related variables at the single cell level (Rolls, 1999; Killian 
et al., 2012; Mao et al., 2021), and interacts with visual and oculomotor systems in support of 
memory-guided attention (Stokes et al., 2012; Günseli & Aly, 2020; Ryan et al., 2020; Poskanzer & 
Aly, 2023; Hutchinson & Turk-Browne, 2012; Aly & Turk-Browne, 2017). Combining these disparate 
literatures, we hypothesized that hippocampal mechanisms that differentiate competing 
memories would be associated with precise attentional selection and reduced activation of 
competing features in visual cortex.  
 
To test these predictions, we designed a novel task that required participants to rely on 
competing memories to guide visual attention. Participants first acquired pairs of competing 
memories, which consisted of two highly similar scenes that were associated with distinct spatial 
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locations. Then, while they were scanned with fMRI, participants performed a difficult visual 
search task. Critically, the search task was structured such that participants could use memories 
from the previous session to predict the location of upcoming search targets. We recorded 
participants’ eye movements continuously during this task, allowing us to assess the efficiency of 
attentional guidance. Using a combination of pattern similarity and population receptive field 
modeling approaches to analyze the fMRI data, we measured: 1) the separability of competing 
memories in the hippocampus; and 2) preparatory representations of target and competitor 
locations in visual cortex prior to search onset. By combining these fMRI measures with our 
eye-tracking based behavioral measurements, we sought to link variability in hippocampal 
separability of competing memories to the precision of visual cortical representations and to the 
accuracy of memory-guided eye movements during visual search. 

Results 

Competitive scene-location learning 

Human participants (N = 32) took part in a two-session experiment that spanned consecutive 
days. In session 1, participants learned 24 scene-location associations. To create memory 
competition, the 24 scenes consisted of 12 pairs of highly similar images (pairmates; Fig. 1A). Each 
scene was associated with a spatial location, which we will refer to as its target location (Fig. 1B). 
There were 8 possible locations arranged in a circle, equidistant from the center of the screen 
and equidistant from each other. Pairmates were never associated with the same location. 
Participants were first exposed to the scenes without their associated locations and then 
performed interleaved study and test blocks on the scene-location associations (Fig. 1C). During 
study blocks, participants were presented with the scene-location associations, one at a time. 
During test blocks, participants were cued with one of the scene images and asked to respond 
by making a memory-guided saccade to the associated target location on a blank display. To 
succeed at this task, participants had to discriminate between scene pairmates such that they 
could respond with the target location associated with the cued scene and avoid responding with 
the competitor location associated with the cued scene’s pairmate.  
 
To evaluate memory, we measured the angular error between participants’ final saccade end 
point and three relevant locations along the circle of studied locations: 1) the target location; 2) 
the competitor location; and 3) a control location an equal distance away from the target as the 
competitor. It was not possible to define a control location when target-competitor distances were 
180 degrees, and thus these trials were excluded for all control vs. competitor location 
comparisons. Note that for all analyses, “degrees” indicates the polar angle distance, or distance 
around the unit circle, and not degrees of visual angle. We assigned a participant’s final saccade 
to one of these three locations if it was closer to that location than to any of the other studied 
locations (i.e. if the angular error between the saccade end point and the center of the relevant 
location was less than 22.5 degrees). To establish whether participants experienced memory 
competition, we first examined the relative probability of saccades to the competitor and control 
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locations. Across all test trials, participants were significantly more likely to make responses to 
the competitor than to the control location (t31 = 4.74; p < 0.001; Fig. 1D), validating the presence of 
competition. We then confirmed that learning occurred during the session by comparing target 
and competitor response probabilities between the first and last test presentation. The relative 
probability of these responses changed reliably over the session (target/competitor x first/last 
interaction: F1,31 = 95.8; p < 0.001; Fig. 1E). Participants made significantly more responses to the 
target location from the first to the last test presentation (first = 37.9%; last = 67.8%; t31 = 9.82; p < 
0.001) and significantly fewer responses to the competitor (first = 12.4%; last = 4.9%; t31 = -5.60; p < 
0.001). Thus, participants successfully acquired the scene-location associations in the first 
experimental session, overcoming interference from memory competitors to do so. 
 

 
 

Figure 1. Experimental design and behavioral data from competitive learning task (session 1). (A) Twelve 
pairs of highly similar scenes (“pairmates”) were used throughout the experiment. (B) Each scene was 
associated with one of eight possible spatial locations, which we refer to as that scene’s target location. The 
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pairmate structure of the scenes was intended to create memory competition, such that participants may 
accidentally bring to mind the target location of the similar scene. We refer to this location as the competitor 
location. The competitor location is highlighted for visualization purposes only; participants saw each image 
paired with its target location only. (C) Participants (N=32) were first exposed to all 24 scenes two times each. 
They then acquired the scene-location associations through interleaved study and test blocks. During study 
trials, participants intentionally encoded the scene-location pairs. During test trials, participants were cued 
with a scene and after a brief central fixation interval (not shown), made a memory-guided saccade to the 
recalled location. Participants were shown the correct location at the end of the trial as feedback. (D) 
Participants were more likely to make saccades to the competitor location than to a distance-matched control 
location (t31 = 4.74, p < 0.001), establishing the presence of memory competition. Dots represent individual 
participant data and horizontal lines represent the across-participant mean. (E) Participants’ memory improved 
over the course of the session, reflected by more frequent saccades to the target location and less frequent 
saccades to the competitor location (F1,31 = 95.8, p < 0.001). Light points and lines represent individual 
participant data. Dark points and error bars represent the across-participant mean and SEM. *** p < 0.001 

Memory-guided visual search behavior 
In session 2, participants performed a memory-guided visual search task while being scanned 
with fMRI. On every trial, participants were briefly presented with a scene image (1.25 s) that 
contained a distortion (Fig. 2A; see Methods/Scene Distortions). Participants’ task was to find this 
distortion as quickly and accurately as possible by moving their eyes and holding fixation on the 
distortion once they found it. Critically, we embedded structure in the task that allowed 
participants to use the memories they formed in session 1 to boost their performance. Participants 
were told that the location associated with a given scene from session 1 was a reliable predictor 
of the distortion location on the next trial. A long intertrial interval (ITI) and brief scene 
presentations encouraged participants to engage in memory-based prediction to allocate 
attention optimally on the next trial. Participants were asked to fixate centrally during the ITI so 
that we could measure preparatory neural representations in retinotopic cortex. To test whether 
participants were actually engaging in a memory-based strategy, we manipulated the validity of 
memory-based prediction, following a well-established attentional cueing paradigm (Posner, 
1980). There were three critical task conditions (Fig. 2B). On valid trials (75% of trials), the 
distortion was placed in the predicted target location. On invalid trials (12.5% of trials), the 
distortion was placed in the competitor location. On no-prediction trials (12.5% of trials), the 
distortion was placed randomly in one of the 8 possible locations used in the experiment (Fig. 1B). 
These no-prediction trials always followed trial-unique novel scenes that had no associated 
location that participants could recall.  
 
We first quantified all saccades that participants initiated during both scene presentation (when 
eye movements were required) and the ITI (when participants were supposed to maintain fixation; 
see Methods/Eye Tracking Preprocessing and Analysis). Participants typically made 3 saccades 
per search trial (median across all runs and all participants). They made significantly fewer 
saccades on trials in which they found the distortion than trials in which they didn’t (t31 = -6.17, p < 
0.001), indicating that they understood the task objective and stopped searching when they 
located the distortion. Participants typically broke fixation during the ITI on only 3.5 of out 56 trials 
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per run (median across all runs and all participants), indicating that they understood when to 
withhold and make eye movements. 
 
To test whether participants were using memory to improve search performance, we examined 
the accuracy of participants’ saccades across the three conditions. Similar to standard attentional 
cueing effects, we expected participants to perform best in the valid condition, when their 
predictions were accurate, and worst in the invalid condition, when their predictions were 
systematically wrong. To verify this, we calculated the angular error between participants’ first 
saccade end point and the center of the distortion location on each trial and scored this saccade 
as accurate if it was closer to the distortion than to any of the other 7 possible locations (<22.5 
degrees of angular error). We expected the first saccade of the search interval to show the 
strongest evidence for a memory-based strategy if participants were using the previous scene 
cue to prepare a saccade. As predicted, we found highly reliable differences in accuracy across 
the three conditions (valid = 45.4%; no-prediction = 21.5%; invalid = 16.9%; F2,62 = 78.7, p < 0.001; 
Fig. 2C). Participants were more likely to make accurate first saccades on valid trials compared to 
no-prediction trials (t31 = 8.72, p < 0.001) and invalid trials (t31 = 9.74, p < 0.001). Participants were 
also less likely to make accurate first saccades on invalid trials than on no-prediction trials (t31 = 
-3.44, p = 0.0016). These effects are consistent with previously reported attentional cueing 
effects, including memory-based attentional cueing (Summerfield et al., 2006); they verify that 
participants prepared a saccade to the target location, yielding performance benefits when the 
distortion appeared there and performance decrements when it unexpectedly appeared 
elsewhere. We next examined the final saccade of the search interval to test whether these 
effects persisted into the trial. Relative to the first saccade, the final saccade of the search interval 
was more accurate in every condition (Supplementary Fig. 1A). However, condition differences 
were still highly significant for the final saccade (F2,62 = 65.9, p < 0.001), with valid performance 
highest and invalid performance lowest (all pairwise comparisons significant at p < 0.001; 
Supplementary Fig. 1A). These results establish that participants were using memory for the 
scene-locations associations to guide visual search. 
 
To determine whether memory competition was present during visual search, we evaluated 
whether participants sometimes used the competing memory to guide their attention. To that 
end, we looked at the distribution of first saccade locations on valid trials. Because the distortion 
was always located at the target location on these trials, participants had no reason to look at the 
competitor location first unless they had retrieved the wrong memory. As expected, the first 
saccade on these trials was frequently near the target (and distortion) location (Fig. 2D and 
Supplementary Fig. 2). Critically, more first saccades were close to the competitor location than to 
a control location equally far from the target (t31 = 7.59, p < 0.001; Fig. 2E and Supplementary Fig. 
2). Because it was not behaviorally advantageous to make a first saccade to the competitor 
location, which was far less likely to contain the distortion than the target location, this pattern of 
behavior suggests that interference between the similar scenes created competition in attention 
and memory. Relative to the first saccade, participants had a reduced tendency to look at the 
competitor location on the final saccade of the search (Supplementary Fig. 1B and 1C). However, 
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final saccades to the competitor location were still more frequent than to the control location, 
indicating persistent memory competition over the trial (t31 = 5.05, p < 0.001; Supplementary Fig. 
1C).  
 
Given these results, we next investigated whether memory competition was modulated by the 
distance between target and competitor locations. We predicted that higher similarity (smaller 
distance) between target and competitor locations would yield more competition based on prior 
findings that similarity influences memory interference (Anderson et al., 2000). Consistent with 
this, we found the largest amount of competition when the target and competitor locations were 
adjacent along the circle of possible locations (45 degrees apart). Specifically, participants made 
relatively more first saccades to the competitor location than to a distance-matched control 
location when the target and competitor locations were 45 degrees apart than when they were 
90 degrees or 135 degrees apart (F2,62 = 5.93, p = 0.0044; Fig. 2F and Supplementary Fig. 2). 
There were no reliable differences between target-competitor location distances when 
examining the last saccade (F2,62 = 0.265, p = 0.768; Supplementary Fig. 1D), though note the low 
overall number of final saccades to the competitor location. Together, these results confirm that 
participants performed accurately on the memory-guided search task but nevertheless 
experienced memory competition.  
 

 
Figure 2. Experimental design and behavioral data from memory-guided visual search task (session 2). (A) 
Scene distortions were created by applying a sinusoidal pixel displacement to a local patch of the image. (B) 
Participants performed a memory-guided visual search task while being scanned. On each trial, a scene with 
one local distortion was presented (highlighted with a white circle for visualization only). Participants were 
instructed to search for the distortion by moving their eyes. Critically, participants could predict the location of 
the distortion on the upcoming trial by recalling the target location associated with the previous image. We 
placed the distortion in the predicted target location on 75% of trials (valid trials) and in the competitor 
location on 12.5% of trials (invalid trials). 12.5% of trials followed trial-unique novel images (no-prediction trials, 
i.e., distortion location is unpredictable). Saccades were evaluated for task accuracy according to where their 
endpoints fell with respect to the distortion. They were also evaluated with respect to the target location, 
competitor location, and a control location the same distance from the target as the competitor. Example 
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saccades for a valid trial, where the distortion and target location are the same, are shown at right. (C) Relative 
to the no-prediction condition, participants’ first saccade was more accurate in the valid condition (t31 = 8.72, p 
< 0.001) and less accurate in the invalid condition (t31 = -3.44, p = 0.0016), indicating that participants were 
using memory to guide their search performance. Grey points and lines represent individual participant data. 
Blue points and error bars represent the across-participant mean and SEM. (D) The distribution of first 
saccade angular errors on valid trials. Angular errors are normalized by the target-competitor distance such 
that x = 0 is the target (and distortion) location, x = 1 is the competitor location, and x = -1 is the control location 
the same distance from the target as the competitor. While first saccades near the target location were most 
likely, the distribution is asymmetric toward the competitor. (E) First saccade probabilities are plotted 
separately for the competitor location (x = 1 in (D)) and the control location (x = -1 in (D)). Participants were 
significantly more likely to make their first saccade to the competitor location than to the control location on 
valid trials (t31 = 7.59, p < 0.001), suggesting that memory competition from the prior session persisted into the 
search task. Dots represent individual participant data and horizontal lines represent the across-participant 
mean. (F) How close the target and competitor locations were to each other significantly modulated how likely 
participants were to make a first saccade to the competitor relative to the control location (F2,62 = 5.93, p = 
0.0044). When target and competitor locations were closest, participants made more errors to the competitor. 
Bars represent the across-participant mean and error bars represent SEM. ** p < 0.01; *** p < 0.001 

 
Because there was a clear effect of memory competition in our task, we next investigated 
whether participants were systematically biased toward or away from the competitor location. In 
order to test this in a way that was independent of our previous analyses detecting interference 
errors, we looked for bias within “correct” responses (<22.5 degrees of error = accurate). Indeed, 
using a signed measure of first saccade error (positive values toward the competitor), we found 
that correct saccades were reliably biased toward the competitor (t31 = 2.43, p = 0.021). Although a 
bias toward the competitor location is consistent with memory competition, an opposite bias 
away from competitor features has also been reported (Chanales et al., 2021). Thus, we do not 
over-interpret this effect, which is more ambiguous than the error-based analyses presented 
earlier. 
 
Finally, though our manipulations of interest were within-participants, we next explored individual 
differences in search performance. We expected that individual differences in search 
performance would be predicted by individual differences in memory if participants were relying 
on memory to guide search. To investigate this, we calculated the correlation between search 
performance on valid trials in session 2 and final memory performance in session 1. 
Across-participant variance in search performance was strongly predicted by variance in final 
memory performance in session 1 (proportion of saccades near target location in session 1 vs. 
session 2, r30 = 0.56, p < 0.001). Furthermore, the degree of memory competition experienced by 
participants in session 1 predicted competition on valid trials in session 2 (proportion of saccades 
near competitor location in session 1 vs. session 2, r30 = 0.40, p = 0.025), indicating that saccades 
to the competitor location in session 2 were most likely the result of memory competition. These 
results further validate the importance of memory, and the resolution of memory competition, for 
visual search performance. 
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Distinct hippocampal representations of competing scenes predict search 
behavior 

We focused our fMRI analyses of the memory-guided search task on two regions that were of 
strong theoretical interest: 1) the hippocampus, which is critical for resolving memory competition 
(O’Reilly & McClelland, 1994; Shapiro & Olton, 1994; Wanjia et al., 2021), and 2) early visual cortex, 
whose representations are biased in favor of attentional targets (Gandhi et al., 1999; Somers et 
al., 1999; Liu et al., 2005). For each participant, we defined the hippocampus (HIPP) anatomically 
in native space. To define early visual cortex (EVC), we combined areas V1, V2, and V3, each of 
which were defined functionally in native space using data from a separate retinotopic mapping 
task (see Methods/Regions of Interest). We also defined several regions of interest (ROIs) to serve 
as controls. These included the dorsal attention network (DAN) and several scene-selective 
regions: the parahippocampal cortex (PHC), the parahippocampal place area (PPA), and 
retrosplenial cortex (RSC). For details on how these were defined, see Methods/Regions of 
Interest.  
 
First, we sought to link the separability of competing scene representations in the hippocampus 
to memory-guided search behavior. Following prior work (Favila et al., 2016; Wanjia et al., 2021), 
we computed an fMRI pattern similarity metric of scene separability. We first estimated the 
average pattern of BOLD activity evoked by every scene image in the search task (24 paired 
scenes and 56 novel scenes; see Methods/Pattern Similarity Analyses). For each of the 12 scene 
pairs, we computed the neural pattern similarity (z-transformed Pearson correlation) of the 
pairmate images (e.g. arch 1 and arch 2, pairmate pattern similarity; Fig. 3A). For each scene pair, 
we also computed the average pattern similarity between each of the pairmates and all 
non-pairmate images (e.g. arch 1 and barn 2, nonpairmate pattern similarity). Pattern similarity 
with novel images was excluded from the nonpairmate average to control for image familiarity. 
For each scene pair, we then computed the difference between pairmate and nonpairmate 
pattern similarity, which we refer to as “scene pair pattern similarity”. Critically, this difference 
score indicates the degree to which pairmates are distinct in a given brain region, controlling for 
the average similarity across images in that region. Higher values indicate that pairmates are 
relatively more similar to each other than they are to other images, whereas lower values indicate 
that pairmates are relatively more distinct from each other compared to other images. Similar to 
prior fMRI studies on hippocampal differentiation (Favila et al., 2016; Wanjia et al., 2021), we 
observed lower scene pair pattern similarity values in the hippocampus than in visual cortex 
(HIPP: -0.018; EVC: 0.022; t31 = -10.2, p < 0.001; Fig. 3B).  
 

10 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2025. ; https://doi.org/10.1101/2023.10.09.561548doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.09.561548
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
Figure 3. Distinct hippocampal representations of competing scenes predict memory-guided eye 
movements. (A) For every pair of similar scenes, we computed scene pair pattern similarity as the difference 
between pairmate similarity (e.g. arch 1 and arch 2) and average nonpairmate similarity (e.g. arch 1 and barn 2). 
Under this measure, lower values indicate that pairmates were relatively more distinct from each other 
compared to other scenes. (B) We compared average scene pair pattern similarity in early visual cortex (EVC; 
defined as V1, V2, and V3, indicated in blue) and the hippocampus (HIPP, indicated in purple). Consistent with 
prior work, competing scenes were more distinct in the hippocampus relative to visual cortex (t31 = -10.2, p < 
0.001). Small dots represent individual participant data. Large dots and error bars represent the 
across-participant mean and SEM. (C) Scene pair pattern similarity in the hippocampus, but not EVC, predicted 
memory-guided eye movements on valid trials. Scene pairs that were more distinct in the hippocampus were 
followed by first saccades that were closer to the distortion location (also the target location) on the next trial 
(t31 = -3.46, p = 0.0016). Error values (angular error between first saccade endpoint and the distortion on valid 
trials) are centered within participants for visualization but see Supplementary Figure 3A for uncentered data. 
Small dots represent individual participant data. Large points and error bars represent the across-participant 
mean and SEM. See Supplementary Figure 3 and 4 for related analyses. ** p < 0.01; *** p < 0.001 

 
Critically, we predicted that variability in this metric would be related to memory-guided search 
behavior on trials in which memory was helpful (valid trials); and, further, that this brain-behavior 
coupling would be selective to the hippocampus. Because our task required discrimination 
between competing scenes to make an accurate memory-guided saccade on the next trial, we 
hypothesized that more separable memory representations in the hippocampus would be 
associated with saccades that were closer to the distortion location in the next search period. We 
reasoned that the first saccade of the search period would most strongly reflect memory 
processing because it could be planned prior to stimulus presentation when no bottom-up input 
was present. Thus, for every participant and scene pair, we calculated the average error between 
the first saccade endpoint and the distortion location on valid trials following the presentation of 
either scene pairmate of interest. Indeed, scene pairs that were more distinct in the hippocampus 
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(i.e. with lower scene pair pattern similarity) were followed by more accurate (lower error) 
saccades than scene pairs that were less distinct (t31 = -3.46, p = 0.0016; Fig. 3C, right and 
Supplementary Fig. 3A). To test whether this relationship was robust to different behavioral 
metrics and analysis choices, we performed this analysis several other ways. First, we tested 
whether this relationship was present when we used the binarized saccade accuracy measure 
previously reported in Figure 2 (<22.5 degrees defined to be accurate) rather than a continuous 
measure of error. Scene pairs that were more distinct in the hippocampus were followed by more 
accurate saccades under this measure (t31 = 2.04, p = 0.049; Supplementary Fig. 3B). This effect 
became stronger when using a more stringent accuracy threshold of 10 degrees (t31 = 2.67, p = 
0.012). We also confirmed that the results from the continuous error analysis were consistent 
when analyzing the last saccade instead of the first saccade (t31 = -3.01, p = 0.005; Supplementary 
Fig. 3C), and when allowing scene pair similarity scores to vary continuously rather than binning 
them into high and low groups (beta = 1.98, SE = 0.834, p = 0.017; Supplementary Fig. 3D). Finally, 
we confirmed that scene pair pattern similarity in the hippocampus was not related to the number 
of saccades participants made when viewing the scenes (beta = -0.001, SE = 0.021, p = 0.950).  
 
We next performed an exploratory analysis to assess whether the relationship between 
hippocampal representations and behavior varied across its anterior-posterior axis, given prior 
work showing important anatomical and functional differences between anterior and posterior 
hippocampus (Poppenk et al., 2013). We found a significant interaction between ROI 
(anterior/posterior hippocampus) and scene pair pattern similarity on search error (F1,31 = 10.76, p = 
0.0026), such that more distinct representations for scene pairmates were linked to lower search 
error in anterior (t31 = -4.33, p < 0.001) but not posterior (t31 = -0.11, p = 0.915; Supplementary Fig. 
4A,B) hippocampus. Thus, while our study was not designed to test this question, we observed 
that anterior hippocampal representations were selectively related to more accurate and 
interference-free memory-guided eye movements. 
 
Finally, we sought to test whether this relationship was selective to the hippocampus. We first 
performed the same analysis in several visual cortical ROIs with sensitivity to visual stimuli and/or 
scenes (EVC, PPA, RSC, and PHC). Considering all five ROIs together – i.e., including 
hippocampus – there was a significant interaction between ROI and scene pair pattern similarity 
bin (F4,124 = 2.57, p = 0.041), indicating that the relationship between representations and behavior 
varied across these brain areas. In contrast to the hippocampus, there was no relationship 
between scene pair pattern similarity in EVC and saccade error (t31 = -1.24, p = 0.22; Fig. 3C, left). 
Similarly, there was no relationship in PPA (t31 = -0.14, p = 0.89), RSC (t31 = 0.90, p = 0.37), or PHC 
(t31 = -1.32, p = 0.20; Supplementary Fig. 4C,D). To further investigate selectivity to the 
hippocampus, we performed an exploratory whole-brain searchlight analysis to look for regions 
in which search error was predicted by scene pair pattern similarity (more vs. less distinct 
pairmates, following the procedure in Fig. 3). This analysis revealed clusters in the anterior 
hippocampus and lateral occipital lobe, in which more distinct representations for pairmates was 
associated with reduced search error (Supplementary Fig. 4E). No other regions showed a 
relationship between scene pair pattern similarity and search error. Taken together, these results 
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show an important link between hippocampal representations and rapid attentional behavior 
guided by memory, and raise the question of how hippocampal representations are coordinated 
with visual cortical representations to support attention. 

Preparatory target and competitor location coding in visual cortex  

We next sought to understand how retrieved memories were used to benefit visual search. Our 
search task was designed so that participants could use memory to predict the location of the 
upcoming distortion during the blank inter-trial interval (ITI) on the vast majority of trials (valid 
trials). Because early visual cortex contains maps of the visual field, and because these maps can 
be activated in a top-down manner (Kosslyn et al., 1995; Kastner et al., 1999; Breedlove et al., 
2020; Favila et al., 2022), we hypothesized that participants’ location predictions during the ITI 
would be represented by spatially-organized activity within these maps. We refer to such spatial 
representations during the ITI as “preparatory coding” because they occur prior to the onset of 
the stimulus and are in direct support of the upcoming task. Given how critical memory-based 
prediction was to task performance (see Fig. 2C), we hypothesized that preparatory target 
location coding in visual cortex would be associated with search success on the next trial, 
whereas preparatory competitor location coding would be associated with interference errors. 
 
To test these hypotheses, we took advantage of models that were developed to characterize the 
spatial organization of visually-evoked fMRI signals. Using data from a separate retinotopic 
mapping task, we estimated the best-fitting population receptive field (pRF) for each voxel in a 
participant’s brain (Fig. 4A and see Methods/pRF Model Fitting). This pRF represents the location 
and extent in the visual field of that voxel’s maximal response to visual stimulation. We used the 
pRF parameters to isolate voxels in early visual cortex (EVC; defined as V1, V2, and V3) with 
responsiveness to the 8 possible target locations. We then examined the BOLD response in 
these EVC voxels during the blank ITI of the search task, after regressing out task-evoked activity 
to remove confounding effects of the visual response from the preceding trial (Fig. 4A and see 
Methods/Visual Cortex Preparatory Responses).   
 
To investigate whether there was a link between preparatory coding of the target location and 
search success, we first visualized ITI responses as a function of a voxel’s distance between its 
pRF and the target memory location on the upcoming trial. We did this separately for upcoming 
trials that were search successes vs. search failures, defined according to the participant’s final 
saccade. We focused on valid trials (75% of all trials), because these were the trials in which 
memory yielded accurate predictions. Thus, search successes were trials in which the search 
concluded at the distortion (also the target memory location) and search failures were all other 
trials. Consistent with our hypothesis, visualizations of visual cortex representations differed for 
search successes and failures (Fig. 4B). For upcoming search successes, we observed the 
strongest ITI response in voxels with pRFs closest to the target location, and this response 
became weaker as pRFs got further away. For upcoming search failures, this visualization did not 
reveal differential coding of the target (vs. other) locations during the ITI .  
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To visualize the relationship between preparatory coding of the competitor location and 
interference errors, we performed the same procedure as in the prior analysis, but sorted voxels 
based on their distance to the competitor location. We focused specifically on search failure trials 
from the previous analysis, averaging separately for upcoming interference errors and other error 
trials. Because we focused this set of analyses on valid trials, interference errors were searches 
that ended at the competitor location, despite the fact that the distortion was in the target 
location. Consistent with our hypothesis, this visualization suggested different representations for 
upcoming interference errors vs. other errors (Fig. 4C). For upcoming interference errors, we 
observed the strongest ITI response in voxels with pRFs closest to the competitor location, and 
this response became weaker as pRFs got further away. For other errors, this visualization did not 
reveal differential coding of the competitor (vs. other) locations during the ITI.  
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Figure 4. Preparatory target coding in early visual cortex predicts search success, whereas preparatory 
competitor coding predicts search failure due to interference. (A) During the inter-trial interval (ITI), 
participants maintained fixation while simultaneously engaging in memory-based prediction, allowing us to 
examine spatially organized preparatory activity in early visual cortex (EVC) during the blank delay. To do this, 
we isolated BOLD responses corresponding to the blank ITI of the search task, separately for voxels with 
population receptive fields (pRFs) that varied in distance from the upcoming target or competitor locations. 
pRFs for every voxel were estimated using data acquired from a separate retinotopic mapping task. (B) We 
examined valid trials and compared preparatory coding of target locations for upcoming search successes 
and failures, which we defined according to the last saccade of search. Preparatory activity was higher around 
the target location during ITIs immediately followed by search successes, relative to ITIs followed by search 
failures. Points and error bars represent the across-participant mean and SEM. Locations at +180 degrees and 
-180 degrees are identical; the data are redundantly represented for visualization only. (C) We repeated the 
same procedure separately for different types of search failures, this time comparing preparatory coding of 
competitor locations for upcoming interference errors vs. other errors. Preparatory activity was higher around 
the competitor location during ITIs immediately followed by interference errors, relative to ITIs followed by 
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other errors. Points and error bars represent the across-participant mean and SEM. Locations at +180 degrees 
and -180 degrees are identical; the data are redundantly represented for visualization only. (D) We directly 
compared EVC BOLD activity during the ITI at pRFs corresponding to the target location (“targ”), competitor 
location (“comp”), control location (“cont”), and all other locations (“other”) for three behavioral outcomes: 
search successes, interference errors, and other errors. The interaction between pRF location and behavioral 

outcome was significant (  = 18.73, p = 0.0046). This interaction was driven by preferential target activation  χ
6
2

for search successes, preferential competitor activation for interference errors, and no preferential activation 
for other errors. Thus, preparatory coding in visual cortex predicts the successful use of memory to guide 
attention as well as failure caused by competition. For simplicity, only the results for pairwise comparisons 
between target, competitor, and control locations are shown. Bars and error bars represent the 
across-participant mean and SEM. *p < 0.05; **p < 0.01; *** p < 0.001 

 
To quantify these effects simultaneously, we assigned each pRF bin the label “target”, 
“competitor”, “control”, or “other” location, separately for every trial and participant. We then 
compared ITI responses in these voxel groups for different behavioral outcomes (search 
successes, interference errors, and other errors). We used a mixed effects model to assess the 
interaction between behavioral outcome and relative BOLD activity in visual cortex voxels coding 

for different locations. An interactive model was a better fit to the data than an additive model (   χ
6
2

= 18.73, p = 0.0046), indicating that preparatory activity in visual cortex voxels coding for target, 
competitor, control, and other locations varied based on behavioral outcome in the upcoming 
trial. To clarify this interaction, we examined relative ITI responses in different pRF locations 
separately for each behavioral outcome. We focus on contrasts between the target location and 
the competitor and control locations, which were equidistant from the target. For search 
successes, visual cortex ITI activity in target pRFs was greater than in competitor pRFs (beta = 
0.013, SE = 0.0033, p < 0.001) and control pRFs (beta = 0.011, SE = 0.0036, p = 0.0027), and no 
different in competitor and control pRFs (beta = -0.0024, SE = 0.0036,  p = 0.50), indicating 
preferential activation of the target location (Fig. 4D, left). For interference errors, visual cortex ITI 
activity in competitor pRFs was greater than in target pRFs (beta = 0.020, SE = 0.010, p = 0.047) 
and control pRFs (beta = 0.027, SE = 0.011, p = 0.013), and no different in target and control pRFs 
(beta = 0.0066, SE = 0.011, p = 0.54), indicating preferential activation of the competitor location 
(Fig. 4D, middle). For other errors, there were no differences between visual cortex ITI activity in 
target vs competitor pRFs (beta = 0.0014, SE = 0.0051, p = 0.79), target vs control pRFs (beta = 
0.0067, SE = 0.0055, p = 0.23), or competitor vs control pRFs (beta = 0.0053, SE = 0.0055, p = 
0.34), indicating no or inconsistent preparatory coding (Fig. 4D, right). These results were similar 
when using the first saccade instead of last saccade to define search successes, interference 

errors, and other errors (interaction:  = 18.2, p = 0.0058; Supplementary Fig 5).   χ
6
2

 
Overall, these results demonstrate that memory-based predictions lead to spatially precise 
preparatory representations in early visual cortex. This precise preparatory coding in turn 
predicts the accuracy of upcoming eye movements during visual search. However, these results 
also demonstrate that preparatory representations in early visual cortex can also reflect 
inaccurate predictions that occur as a result of memory competition. In this case, these 
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representations are associated with interference errors in attentional allocation that lead to task 
failure. Taken together, our findings in visual cortex show that preparatory coding predicts the 
successful use of memory to guide attention as well as failure caused by competition. 

Distinct hippocampal representations are associated with reduced competitor 
activation in visual cortex 

Next, we asked whether the separability of scene representations in the hippocampus was 
related to the relative activation of target and competitor locations in visual cortex. We 
hypothesized that distinct scene representations in the hippocampus would be associated with 
reduced activation of competitor locations in visual cortex, allowing preparatory representations 
in this region to be more precise. To test this hypothesis, we used our pRF-based approach to 
re-examine preparatory target and competitor location coding in visual cortex during the ITI of 
valid trials, separately for scenes that were more vs. less distinct in the hippocampus (following 
the procedure in Fig. 3A). We focused on scene pairs for which the target and competitor 
locations were 45 degrees apart (adjacent locations in our study) because they posed the most 
memory competition – specifically, a greater tendency to make saccades to the competitor 
location vs. the distance-matched control location (Fig. 2F). We first visualized ITI activity in early 
visual cortex as a function of pRF distance from the target location, separately for 45 degree pairs 
that were more vs. less distinct in the hippocampus. We did this first at the individual participant 
level, because the clockwise vs. counterclockwise positioning of the competitor and control 
locations with respect to the target location differed across scene pairs and across participants 
for a given scene pair (Fig. 5A). Then, as a visualization, we aggregated this data across 
participants by averaging within each pRF distance bin (Fig. 5B). Note that this averages together 
data from competitor and control locations, but provides a visualization similar to those in Figure 
4B.  
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Figure 5. Distinct hippocampal representations are associated with reduced competitor activation in visual 
cortex. (A) We examined the relationship between hippocampal representations of similar scenes and 
preparatory visual cortical representations for the subset of scene pairs in which the target and competitor 
locations were adjacent (45 degrees apart). Example single-participant BOLD responses corresponding to the 
blank intertrial interval (ITI) are plotted for early visual cortex (EVC) voxels with population receptive fields 
(pRFs) different distances from the target location. For the waterfall pairmates, we plot example EVC activity 
from one participant who showed less distinct hippocampal representations for the pairmates (left) and one 
participant who showed more distinct hippocampal representations for the pairmates (right). pRFs responsive 
to a given scene’s target location are plotted at 0 (green shading). For a given scene, the competitor location 
is either at -45 degrees (control location at +45 degrees) or +45 degrees (control location at -45 degrees). (B) 
We visualized group EVC data by averaging activity within each pRF distance bin across participants. Note 
that activity in the +/- 45 degree bins (shaded orange and gray) includes data from both the competitor and 
control locations because whether the competitor is clockwise or counterclockwise from the target is random 
across participants and scene pairs. These data are therefore for visualization only. Points and error bars 
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represent the across-participant mean and bootstrapped SEM. Locations at +180 degrees and -180 degrees 
are identical; the data are redundantly represented for visualization only. (C) We quantified the data in (B) by 
identifying for each trial the pRF locations that corresponded to the “target”, “competitor”, “control”, and 
“other” locations. We then examined ITI responses in visual cortex separately for each of these bins, and 
separately for scene pairs that were more vs. less distinct in the hippocampus. The interaction between pRF 

location (target/competitor/control/other) and hippocampal distinctiveness (more/less) was significant (  =  χ
3
2

14.3, p = 0.0025). This interaction was driven by comparable target and competitor activation in visual cortex 
for less distinct pairs (beta = -0.00055, SE = 0.0078, p = 0.94), but lower competitor than target activation for 
more distinct pairs (beta = -0.018, SE = 0.0071, p = 0.012). Thus, increased hippocampal distinctiveness is 
associated with more precise preparatory representations in visual cortex. For simplicity, only the results for 
pairwise comparisons between target, competitor, and control locations are shown. Bars and error bars 
represent the across-participant mean and bootstrapped SEM. * p < 0.05; ** p < 0.01 

 
To quantify these effects, we assigned each pRF bin the label “target”, “competitor”, “control”, or 
“other” location separately for every trial and participant and compared ITI responses in these 
voxel groups for more vs. less distinct scene pairs (Fig. 5C). We used a mixed effects model to 
assess the interaction between scene pair distinctiveness in the hippocampus (more vs. less) and 
relative BOLD activity in visual cortex voxels coding for different locations. An interactive model 

was a better fit to the data than an additive model (  = 14.3, p = 0.0025), indicating that  χ
3
2

preparatory activity in visual cortex voxels coding for target, competitor, control, and other 
locations varied based on hippocampal distinctiveness. To clarify this interaction, we conducted 
follow-up comparisons separately for scene pairs that were more vs. less distinct in the 
hippocampus. We focused on contrasts between the target location and the competitor and 
control locations, which were equidistant from the target. For scene pairs that had less distinct 
representations in the hippocampus, visual cortex ITI activity in target pRFs was comparable to 
competitor pRFs (beta = 0.00055, SE = 0.0078, p = 0.94). In addition, ITI activity in both target 
(beta = 0.023, SE = 0.0078, p = 0.0035) and competitor (beta = 0.022, SE = 0.0078, p = 0.0044) 
pRFs was greater than in control pRFs (Fig. 5C, left). Thus, when scene pairmates had less distinct 
representations in the hippocampus, both target and competitor locations were activated in 
visual cortex but not differentially so. For scene pairs that had more distinct representations in the 
hippocampus, ITI activity in target pRFs was higher than in competitor pRFs (beta = 0.018, SE = 
0.0071, p = 0.012) and control pRFs (beta = 0.020, SE = 0.0072, p = 0.006). ITI activity in 
competitor pRFs was no different from control pRFs (beta = 0.0017, SE = 0.0071, p = 0.81; Fig. 5C, 
right). Thus, more separable hippocampal scene representations were linked to relative 
suppression of competitor locations in visual cortex, allowing for more precise visual cortical 
representations prior to search onset. Complementing our finding that memory competition was 
elevated for scene pairmates whose target and competitor locations were adjacent, i.e., 45 
degrees apart (Fig. 2F), the interaction between hippocampal scene distinctiveness and visual 
cortex pRF responses was selective to the 45 degree pairs (target-competitor distance x 

target/competitor/control/other pRFs x more/less differentiated:  = 49.2, p < 0.001;  χ
19
2

target/competitor/control/other pRFs x more/less differentiated for 90, 135, and 180 degree pairs: 
all ps > 0.3). The selectivity of this finding is consistent with work proposing that the amount of 
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competition between memories is a driver of representational change in the brain (Ritvo et al., 
2019, 2024; Wammes et al., 2022). 
 
We next performed an exploratory analysis to assess whether the relationship between 
hippocampal distinctiveness and visual cortex activation varied across the hippocampal 
anterior-posterior axis. We considered only the scenes whose target and competitor locations 
were 45 degrees apart because effects in the whole hippocampus were selective to this 
condition. There was no interaction between hippocampal long-axis position, scene pair 

distinctiveness, and visual cortex pRF location (  = 4.75, p = 0.69). Instead, the results in both  χ
7
2

anterior (  = 7.17, p = 0.067) and posterior (  = 6.85, p = 0.077) hippocampus were qualitatively  χ
3
2  χ

3
2

similar to those in the whole hippocampus (Supplementary Fig. 6A). 
 
We then sought to test whether relative target and competitor activation in visual cortex was 
selectively related to scene distinctiveness in the hippocampus. To test this, we repeated our 
previous analysis of the 45 degree pairs but divided our visual cortex data using pattern 
distinctiveness in other brain regions besides the hippocampus. We used the same control 
regions of interest as we did for Figure 3 (see results in Supplementary Figure 4), and tested 
whether pattern distinctiveness in these regions (PPA, RSC, and PHC) predicted location coding 
in early visual cortex (Supplementary Fig. 6B). There was no interaction between scene pair 

distinctiveness in PPA (  = 1.32, p = 0.725) or PHC (  = 4.21, p = 0.240) and relative BOLD  χ
3
2  χ

3
2

activity in visual cortex voxels coding for different locations. There was an interaction between 

scene pair distinctiveness in RSC and relative BOLD activity in visual cortex (  = 9.51, p = 0.023).  χ
3
2

However, the interaction present in RSC differed from the interaction present in the hippocampus 
and did not easily afford a similar interpretation. First, unlike hippocampus, target and competitor 
activation did not differ when considering either low (beta = 0.012, SE = 0.0075, p = 0.10) or high 
(beta = 0.0076, SE = 0.0074, p = 0.30) pattern distinctiveness in RSC. Second, the relationship 
between competitor and control activation was modulated by RSC distinctiveness in the opposite 
way it was modulated by hippocampal distinctiveness, such that more distinct RSC 
representations were related to relatively higher competitor than control activation (beta = 0.025, 
SE = 0.0074, p < 0.001). Finally, we considered whether univariate activity in the dorsal attention 
network (DAN), a network of regions in frontoparietal cortex implicated in attentional control over 
the visual system, could be related to relative target and competitor activation in visual cortex. 
Instead of dividing our data by pattern distinctiveness, we divided scene pairs according to their 
evoked univariate BOLD activity in the dorsal attention network (DAN). We found no relationship 
between univariate activity in the DAN and relative BOLD activity in visual cortex voxels coding 

for different locations (  = 3.46, p = 0.326; Supplementary Fig. 6B). Taken together, these results  χ
3
2

demonstrate a selective link between the distinctness of hippocampal representations and 
preparatory signals in the visual system that support memory-guided search behavior. 
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Discussion 

Memory and perception both require selection of relevant representations in the face of 
competitors. Here, using a novel task, we demonstrate that mechanisms that overcome 
competition in memory and perception are linked via the hippocampus. First, we show that more 
distinct scene representations in the hippocampus are associated with more accurate eye 
movements during memory-guided visual search. Second, we show that early visual cortex 
exhibits preparatory coding of target and competing search locations, with preferential 
representations of upcoming target locations predicting search successes and preferential 
representations of upcoming competitor locations predicting search failures due to interference. 
Finally, we link these findings by showing that, when competition is high, distinct representations 
in the hippocampus are associated with changes to the precision of preparatory representations 
in visual cortex. When scene representations in the hippocampus are more distinct, relative 
competitor activation in visual cortex is lower, yielding more precise preparatory representations.  
 
Our findings build on a rich literature of prior work examining the role of memory in guiding visual 
attention. Behavioral studies have repeatedly shown that attentional performance, such as the 
speed of visual search, improves with previous exposure to the search targets and/or 
surrounding context (Chun & Jiang, 1998; Fan & Turk-Browne, 2016; Chun & Turk-Browne, 2007; 
Nobre & Stokes, 2019). More recent work has illuminated the circumstances under which 
memories may cause interference or competition in attentional allocation and eye movements 
(Nickel et al., 2020; Wynn et al., 2020; Hirschstein & Aly, 2023). Complementary lesion studies 
(Chun & Phelps, 1999; Ryan et al., 2000; Ruiz et al., 2020) and fMRI experiments (Summerfield et 
al., 2006; Hannula & Ranganath, 2009; Stokes et al., 2012; Goldfarb et al., 2016; Günseli & Aly, 
2020) have also begun to uncover the hippocampal and cortical mechanisms by which memories 
can guide attention. We were particularly inspired by prior fMRI studies showing that: 1) 
hippocampal activity is higher when attention is guided by memory than when it is guided by 
external cues (Summerfield et al., 2006; Günseli & Aly, 2020) and 2) contralateral preparatory 
activity in visual cortex precedes memory-guided attention (Stokes et al., 2012).  
 
Here, we sought to extend prior work implicating the hippocampus in memory-guided attention 
by 1) testing how hippocampal computations that differentiate memories shape the precision of 
attentional selection; and 2) linking these hippocampal computations to spatially organized 
preparatory coding in visual cortex – an index of spatial memory retrieval in anticipation of 
upcoming attentional goals. To do this, we capitalized on several fMRI approaches that allow 
characterization of representations in the brain: pattern similarity techniques and visual encoding 
models. These approaches allowed us to test specific hypotheses about how the distinctiveness 
of hippocampal representations may be linked to the suppression of competing locations in 
visual cortex.  
 
Our work critically extends prior work on memory-guided attention to more realistic task contexts 
in which multiple memories compete for attention, revealing ties between how competition is 
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resolved in memory and perception. To make this advance, we drew on recent fMRI studies 
examining how the hippocampus prevents interference between competing memories (Favila et 
al., 2016; Chanales et al., 2017; Wanjia et al., 2021). These studies associated highly similar scenes 
with distinct outcomes and tracked how hippocampal representations of the scenes changed as 
memory interference was resolved. This work has found that while similar memories begin with 
similar hippocampal representations, these representations become differentiated with repeated 
competition, consistent with computational models that have proposed activity-dependent 
representational change in the hippocampus (Norman et al., 2006; Ritvo et al., 2019, 2024). 
Complementary work with MEG has shown that the hippocampus may minimize competition 
between overlapping memories by representing them at different phases of its ongoing theta 
rhythm (Kerrén et al., 2022). We built on this set of findings by asking whether distinct 
hippocampal representations support online perceptual behavior and are linked to 
representations in the visual system. Instead of focusing on the circumstances that lead to 
hippocampal differentiation or the absolute magnitude of differentiation, as prior work has done 
(Favila et al., 2016; Chanales et al., 2017; Wanjia et al., 2021), we focused on variability in 
hippocampal representations at the end of this process. Specifically, we reasoned that this 
variability would be linked to variation in visual cortex representations and in eye movements 
during visual search. By showing these links, our study demonstrates that memory differentiation 
in the hippocampus is not just important for direct assessments of memory, but also for natural 
perceptual behaviors in which memory must be combined with ongoing sensory input. This 
finding adds to the growing literature suggesting that the separability of hippocampal 
representations is important for diverse cognitive functions, including navigation (Fernandez et 
al., 2023), control (Jiang et al., 2020), and reinforcement learning (Ballard et al., 2019).  
 
Note that because our purpose was not to re-establish prior findings of hippocampal 
differentiation, we did not measure neural representations of our stimuli prior to learning, nor did 
we include a baseline condition consisting of similar scene pairs that had no competing 
associations. Thus, unlike prior studies, our data cannot provide direct evidence for whether 
similar memories that compete are differentiated in the hippocampus above and beyond similar 
memories that don’t compete. However, none of our effects of interest are concerned with the 
absolute value of pattern similarity for pairmates vs. nonpairmates (whether these difference 
scores are above or below zero or by how much). Instead, our focus was on how variability in this 
measure is related to behavior and representations in visual cortex. Nevertheless, because of 
prior evidence linking memory competition to changes in hippocampal representations (Favila et 
al., 2016; Wanjia et al., 2021) and the similarities between our study and these prior studies, we 
still interpret our findings in terms of the competition-dependent memory differentiation 
framework. An alternative explanation is that some scene pairs are represented more distinctly 
than others even on initial exposure, due to perceptual and/or semantic attributes of the scenes 
or due to variation in automatic hippocampal pattern separation (Yassa & Stark, 2011). This source 
of variation in hippocampal scene separability, however, cannot account for our findings without 
also positing additional links between scene representations and learning in our task. For 
example, scene pairs that are more effectively separated by the hippocampus on initial exposure 
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could support more effective scene-location learning and thus more accurate memory-guided 
eye movements. Given the prior research showing changes in hippocampal representations due 
to memory competition (Favila et al., 2016; Wanjia et al., 2021) – research using similar learning 
tasks and stimuli as used here – we think it is likely that the competition framework will be 
supported over one based on automatic pattern separation. Nevertheless, to adjudicate between 
these accounts, future studies will need to manipulate stimulus properties of interest while also 
tracking hippocampal representations during initial exposure and over learning. 
 
Stimulus properties may also play a role in explaining our exploratory results comparing the 
anterior and posterior hippocampus. Though we did not find reliable differences between the 
anterior and posterior hippocampus in their relationship to preparatory coding in visual cortex, we 
did find differences in their relationship with search behavior. Post-hoc analyses revealed that the 
relationship between hippocampal scene distinctiveness and search behavior was selective to 
the anterior hippocampus. At first pass, these results are at odds with prior work that has 
proposed that the posterior hippocampus contains detailed representations while the anterior 
hippocampus contains more gist-like representation (Poppenk et al., 2013). However, 
experimental evidence in support of this idea has been mixed. Some studies have found 
evidence for more distinct representations in anterior hippocampus (Dandolo & Schwabe, 2018), 
particularly after a delay (Cowan et al., 2021). Some studies also report differences in stimulus 
selectivity along the hippocampal long axis, which may interact with representational granularity 
accounts. For example, some prior work has argued that the anterior hippocampus plays a 
particularly important role in scene processing and recall (Zeidman & Maguire, 2016). Thus, 
further examination of anterior-posterior differences in hippocampal coding, and how they 
interact with other experimental factors, such as memory delay or stimulus properties, is required.   
 
Our results are consistent with a large body of work demonstrating memory reactivation and 
preparatory coding in early visual cortex (Stokes et al., 2009, 2012; Bosch et al., 2014; Kok et al., 
2014; Naselaris et al., 2015; Favila et al., 2022; Woodry et al., 2025). Though the demonstration of 
memory reactivation itself is not new, we extend this body of work in several ways. First, we 
provide evidence for reactivation of multiple competing memories in early visual cortex. Prior 
work looking at competitive memory reactivation has primarily relied on competing memories 
from different categories (e.g., faces and places) and has used diminished category decoding 
accuracy during recall as an indirect indicator that multiple memories are being reactivated (Kuhl 
et al., 2011; Lewis-Peacock & Norman, 2014). Here, we characterized competitive reactivation in 
the spatial domain, using model-based methods that distinguish between co-activation of 
multiple memories and failed retrieval. Second, we show that relative activation between two 
competing memories predicts the location of upcoming eye movements. This finding is 
consistent with previous work that reported a link between coarse (hemifield-level) memory 
reactivation and visual search behavior (Stokes et al., 2012). We extend this link with behavior to a 
case in which multiple memories compete and also use methods that allow us to characterize 
neural reactivation at a higher level of spatial precision.  
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Finally, we show that hippocampal pattern distinctiveness is selectively related to the precision of 
visual cortex preparatory coding when memory competition is especially high. Specifically, scene 
pairmates with a 45 degree target-competitor distance were associated with the highest number 
of interference errors, suggesting elevated memory competition and raising the possibility that 
hippocampal distinctiveness may be particularly important for the 45-degree condition. Indeed, 
when target and competitor locations were 45 degrees apart, more distinct hippocampal 
representations for the pairmates was associated with preferential activation of the target 
location in visual cortex. Conversely, less distinct hippocampal representations were associated 
with activation of both target and competitor locations in visual cortex. This relationship between 
hippocampal pattern distinctiveness and visual cortex preparatory activity was not present when 
target and competitor locations were further apart, suggesting that hippocampal distinctiveness 
may play a particularly important role in modulating visual cortex activity when memory 
competition remains high. Studies that track the relationship between hippocampal patterns and 
visual cortex preparatory activity as memory competition is resolved will be needed to confirm 
this account. The selectivity of the hippocampal-visual cortex relationship to 45 degree 
target-competitor distances is also consistent with the idea that the hippocampus is particularly 
important for binding precise, high-resolution information in memory (Yonelinas, 2013; Kolarik et 
al., 2018). Under this account, the hippocampus may be particularly important in modulating visual 
cortex when resolving competition between memories requires fine spatial discrimination. 
  
Our results raise the possibility that hippocampal computations may drive precise 
memory-guided eye movements and influence visual cortical representations. However, it is 
important to note that fMRI cannot establish causal links between hippocampus, visual cortex, 
and the oculomotor system. Our hypothesized mechanism is supported by strong behavioral 
evidence that memory is contributing to behavior in our task, as well as prior work implicating the 
hippocampus in memory-guided attention (Chun & Turk-Browne, 2007; Aly & Turk-Browne, 2017; 
Günseli & Aly, 2020; Poskanzer & Aly, 2023) and prediction (Kok et al., 2012; Hindy et al., 2016; 
Kok & Turk-Browne, 2018; Günseli & Aly, 2020; Tarder-Stoll et al., 2024). Our proposed 
mechanism is also supported by prior causal studies showing that hippocampal damage disrupts 
anticipatory coding in visual cortex (Finnie et al., 2021) and that hippocampal stimulation can drive 
activity in oculomotor areas (Ryan et al., 2020). Future studies with stimulation techniques or 
lesion methods, however, will be critical for direct tests of our hypothesis about causal links 
between hippocampus, visual cortex, and subsequent eye movements during memory-guided 
attention. That said, even if such tests determined that the hippocampus can exert a causal 
influence on visual cortex representations and eye movements, it is likely that interactions 
between hippocampus and visual cortex are bidirectional. For example, attentional modulation of 
visual cortex representations could contribute to the distinctiveness of hippocampal 
representations by adjusting input to the hippocampus (Amer & Davachi, 2023).  
 
It is possible that other brain areas are also supplying top-down drive to visual cortex and/or the 
hippocampus. Candidate areas for such modulation include regions of prefrontal and parietal 
cortex that are implicated in the control of visual attention (Corbetta & Shulman, 2002), 
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memory-guided attention (Rosen et al., 2015, 2016; Poskanzer & Aly, 2023), and resolving 
memory competition (Wimber et al., 2015; Anderson & Hulbert, 2021). One intriguing possibility is 
that control-related cortical regions play an important role in enabling top-down spatial attention 
in the face of memory competition early in learning when hippocampal memories are not well 
formed or too overlapping to prevent interference. However, once hippocampal memory 
representations are sufficiently differentiated, the need for control resources may be reduced 
(Kuhl et al., 2007). While we did not observe any link between univariate activity in the dorsal 
attention network (which includes lateral frontoparietal areas) and visual cortex preparatory 
coding in this study, it’s important to note that our measurements were made after considerable 
training occurred in session 1. Future work could examine different neocortical systems as 
memories are acquired to better understand the contributions of multiple brain areas to 
competition resolution and memory-guided attention.  
 
To conclude, we show that hippocampal mechanisms for differentiating competing memories are 
associated with more accurate attentional selection and with more precise preparatory activity in 
the visual system. Our results demonstrate linked mechanisms that overcome competition in 
memory and perception and argue for a broad role for memory systems in shaping adaptive 
perceptual behavior. 

Methods 

Participants 

Thirty-six human participants were recruited from the Columbia University community and the 
surrounding area. Participants provided written informed consent prior to the experiment and 
were compensated $20/hr for their time. All experimental procedures were approved by the 
Columbia University Institutional Review Board. We excluded all data acquired from four 
participants from our analyses. Three participants were excluded because they withdrew from the 
experiment during the first experimental session due to difficulty with the task. MRI data was not 
acquired for these participants. One participant was excluded because of low eye-tracking data 
quality from the MRI session (> 3 standard deviations below the mean number of usable trials 
across participants). The final sample of 32 participants consisted of 15 male individuals, 16 
female individuals, and 1 non-binary individual. Participants included 11 individuals who identified 
as White, 9 who identified as Hispanic/Latino and White, 3 who identified as Black or 
African-American, 1 who identified as Hispanic/Latino and Black or African-American, 5 who 
identified as Asian, and 3 who identified as multiracial. Participants were 18–31 years old (median 
= 21) and had 12–20 years of education (median = 15.5). All participants were right-handed, had 
normal or corrected-to-normal visual acuity, normal color vision, and no MRI contraindications.  
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Stimuli 

Scenes 

There were 24 critical scene stimuli, comprising 12 pairs of highly similar scene images 
(pairmates). Each pair belonged to a distinct outdoor scene category: apple orchards, arches, 
barns, canyons, castles, cities, gazebos, lighthouses, ponds, roller coasters, vineyards, and 
waterfalls. The two scene pairmates from each category were handpicked to have high levels of 
perceptual similarity. Scenes were sourced from the internet and included several of the 
categories used in Favila et al. 2016. We validated the perceptual similarity of our similar scenes 
by running the images through three convolutional neural network models (alexnet, vgg16, and 
resnet50) that approximate high-level visual cortex (Yamins et al., 2014; Eickenberg et al., 2017; 
Lindsay, 2020) and were pretrained to classify scenes. We used late-layer activations from these 
models to compute scene similarity matrices for our stimulus set. Pairmate similarity distributions 
were higher than and non-overlapping with non-pairmate similarity distributions in all models, 
validating our pairmate similarity structure. Beyond these critical scenes, an additional 56 outdoor 
scenes were used as novel images in the fMRI task only. These scenes were hand-selected to 
have low perceptual similarity with the scene pair stimuli and with each other. Throughout the 
experiment, scenes were displayed in the center of the screen and were sized to be 15 x 15 
degrees of visual angle. Participants never saw any two scenes presented simultaneously for 
comparison. 

Locations 

Eight isoeccentric (eccentricity = 3.3 degrees of visual angle) spatial locations were evenly 
sampled across polar angles (theta = 22.5, 67.5, 112.5, 157.5, 202.5, 247.5, 292.5, or 337.5 
degrees). During learning, locations were always visualized as a white circle with a green outline 
centered at one of these locations and with a radius of 0.75 degrees of visual angle. Participants 
never saw the eight locations highlighted simultaneously. 

Scene Distortions 

Spatially localized distortions were created in the scene images by vertically displacing a local 
patch of pixels according to a sinusoidal function. The distortion was smoothly modulated by a 
fixed 2D Gaussian function so that the distortion was strongest at the center and faded gradually 
outwards. Perceptually, this resulted in a small circular patch of the image looking “wavy” with no 
hard boundary between the distorted patch and the rest of the image. For each of the 24 critical 
scene stimuli and each of the 56 novel scene stimuli, we created eight different distorted images. 
Each version of an image contained a single distorted location centered at one of the eight 
isoeccentric spatial locations used in the competitive learning task. To create each distorted 
image, we initially used a sinusoid with a fixed spatial frequency, a fixed amplitude, and a 
randomly selected phase, centered at the distortion location and smoothed with a 2D Gaussian. 
Then, to equate the difficulty of identifying distortions across different images and across 
different locations within an image, we ran a separate online experiment. Online participants 
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viewed the initial images one at a time for 3 s each and were instructed to click on the distortion 
as quickly as possible. Based on participants’ ability to detect the distortions, we separately 
adjusted the amplitude of the sinusoid (distortion strength) up or down for each image and 
location, targeting an accuracy of 50% for each image and location across participants. We did 
this iteratively across four rounds of data collection, resulting in final distortion strengths that 
were tailored to each location within each image. We purposely chose a relatively modest 
accuracy threshold for this norming study to ensure that detecting the distortions was difficult 
enough to encourage participants to use memory to guide their attention in the main search task.  

Experimental Design and Procedure 
The experiment consisted of two sessions, which occurred on consecutive days. In the first 
session (behavior only), participants performed a competitive learning task during which they 
acquired competing scene-location associations. The following day, participants performed a 
memory-guided visual search task while being scanned with fMRI. This task required participants 
to use the scene-location associations they acquired in the first session to improve their search 
performance. Participants also performed a population receptive field mapping task (see Session 
2: Retinotopic Mapping Task (fMRI)) and localizer task (not analyzed here) while being scanned. 
All tasks were implemented in PsychoPy. Design and procedure details for each session and task 
are described below.  

Session 1: Competitive Learning Task (Behavioral) 

The goal of the first session was for participants to learn competing scene-location associations. 
There were three types of blocks in this session: scene exposure, study, and test. Participants’ 
eye movements were collected continuously in all three block types.  
 
Scene Exposure. Participants began the session with two blocks of scene exposure. They were 
instructed that this was an opportunity to become familiar with the scenes before learning the 
scene-location associations, and that some scenes would be similar to each other. In each scene 
exposure block, participants were presented with each of the 24 critical scenes one time. Scenes 
were presented in a random order with the constraint that pairmates not be presented back to 
back. Each scene was presented on a gray background for 2 s. Participants’ eye movements 
were unrestricted during scene presentation. A 2 s central fixation interval occurred in between 
trials. Fixation on the central dot during the intertrial interval was enforced with a beep in 
response to fixation breaks. 
 
Scene-Location Associations. After completing the scene exposure blocks, participants acquired 
24 scene-location associations. Critically, some of these memories competed with each other 
because of the pairmate structure of the scenes. Scene-location associations were determined 
according to the following procedure. Each of the 24 critical scenes was assigned to predict one 
of the eight spatial locations. This was done randomly for each participant such that: 1) pairmate 
scenes were never associated with the same location; 2) the distance between two pairmates’ 
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associated locations (45, 90, 135, or 180 degrees) was balanced; 3) all eight locations were 
sampled evenly. We refer to the location associated with a scene as that scene’s target location 
and the location associated with the pairmate scene as the competitor location. 
 
Study and Test Blocks. Participants acquired the scene-location associations through study and 
test blocks. During study blocks, participants were presented with scene-location associations 
one time each and were instructed to explicitly encode the associations to the best of their ability. 
At the start of each study trial, a scene was presented on a gray background for 2 s, followed by 
that scene’s associated location for 2 s. The location (see Methods/Stimuli/Locations) was 
overlaid on a dark gray box the same size as the scene. Participants’ eye movements were 
unrestricted during scene and location presentation. A 2 s enforced central fixation interval 
occurred in between study trials. Study trial order was randomized within a block with the 
constraint that scene pairmates not be presented in consecutive trials. During test blocks, 
participants were tested on their memory for the scene-location associations one time each. They 
were instructed to recall the associations as accurately as possible and to guess if necessary. At 
the start of each test trial, a scene cue was presented on a gray background for 2 s, followed by a 
2 s enforced central fixation interval. The response period began immediately after this with the 
onset of a blank dark gray box the same size as the scene. Participants were instructed to make a 
memory-guided saccade to the cued scene’s associated location during this period and to hold 
their gaze at the remembered location. The response period lasted 2 s and the participant’s 
average eye position in the final 200 ms of the response period (excluding blinks) was recorded 
as their response. Angular error was computed as the angular distance between this response 
and the center of the correct location. Immediately following the response period and regardless 
of the participant’s response, the correct location was presented for 1 s as feedback. Participants’ 
eye movements were unrestricted during scene presentation and location feedback. A 2 s 
enforced central fixation interval occurred in between test trials. Test trial order was randomized 
within a block with the constraint that scene pairmates not be presented in consecutive trials. At 
the end of each test block, participants were shown a block feedback screen that reported their 
average angular error as well as the percentage of trials for which their response was closer to 
the target location than to the competitor location. 
 
Block Order and Performance Evaluation. To ease the difficulty of the task, participants first 
performed three consecutive study-test rounds on 12 scene-location associations (6 scene pairs). 
They then repeated the process for the remaining 12 scene-location associations. After 
performing the second set of three study-test rounds, participants performed two test blocks in 
which they were tested on all 24 scene-location associations. If a participant achieved an average 
angular error of 20 degrees or less across these two blocks, the learning task was terminated. If a 
participant did not meet this threshold, they continued performing test blocks until the average of 
their last two blocks met this threshold or until the end of the 1.5 hour session was reached. We 
targeted these extra test blocks toward poorly learned pairs by dropping well-learned pairs from 
the blocks. Well-learned pairs were pairs for which the participant responded within 20 degrees 
of angular error to both pairmates on two consecutive blocks.  
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Session 1: Distortion and Search Practice (behavioral) 

At the end of Session 1, participants did two short practice tasks that prepared them for the 
scanned search task in the next session. Participants were told that their task the next day would 
involve searching for distortions hidden in scenes. They were then given a short task designed to 
introduce them to what these distortions looked like. Participants viewed 30 example images with 
representative distortions, one at a time. The task was self-paced, allowing participants to search 
for each distortion for as long as they wanted before choosing to reveal the location of the 
distortion. None of the distorted images in this task appeared in the next session. Then, 
participants were instructed on the search task (see next section) and practiced a modified 
version of it with the 24 critical scenes while their eye movements were recorded. In this modified 
version, participants were given longer to search for the distortions (2.75 s vs. 1.25 s in the fMRI 
task) and all trials were valid.  

Session 2: Memory Refresher and Search Practice (behavioral) 

At the start of session 2, immediately before entering the scanner, participants did two short 
practice tasks to prepare them for the scanned search task. First, participants were re-tested on 
the scene-location associations that they learned the previous day. They then practiced the 
version of the search task that they would perform in the scanner. Both of these tasks used an 
eye-tracking setup equivalent to the one used in session 1, but located in the same building as 
the MRI facility. The exact number of practice blocks/trials was based on participant performance 
and comfort with the task. 

Session 2: Memory-guided Visual Search Task (fMRI) 

The goal of the second session was for participants to use their memories of the scene-location 
associations to guide performance in a novel visual search task. Participants completed the 
search task while being scanned with functional MRI (see MRI Acquisition) and while their eye 
movements were recorded continuously (see Eye Tracking Data Acquisition).  
 
Task Design. The purpose of the task was to measure participants’ ability to use competing 
memories to guide online attentional behavior. To encourage reliance on memory, we designed a 
visual search task that was challenging to perform under the chosen task parameters (high 
search difficulty and short stimulus presentation). On each trial of this task, participants had 1.25 s 
to search a scene image for a small local distortion (see Stimuli/Scene Distortions). Under these 
conditions and based on our distortion norming experiment and other preliminary pilot data, 
participants were expected to locate the distortion on fewer than half of trials. Critically, we 
embedded structure in the task that allowed participants to improve their search performance if 
they could recall the scene-location associations they learned the previous day. Specifically, 
consecutive trials were linked such that each scene was both a search array (i.e. it contained one 
distortion) and a cue for the subsequent trial. If participants saw one of the 24 critical scene 
stimuli from session 1 in the trial sequence, that meant that the scene’s associated target location 
was the most likely location of the distortion on the next trial. This manipulation encouraged 
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participants to recall the prior scene’s target location during the intertrial interval to predict the 
distortion location on the upcoming trial. There were three conditions of interest: validly cued 
trials, invalidly cued trials, and no-prediction trials. On validly cued trials, which were 75% of all 
trials, the distortion was placed in the previous scene’s target location. On invalidly cued trials, 
which were 12.5% of all trials, the distortion was placed in the location associated with the 
previous scene’s competitor (i.e., the target location of the previous scene’s pairmate). On 
no-prediction trials, which were 12.5% of all trials, the distortion was placed randomly in one of 
the eight possible distortion locations. These trials were always preceded by one of the 
trial-unique novel scenes, which had no associated target location (see Stimuli/Scenes). Trial 
orders were constructed such that the critical manipulation between scene identity and the next 
trial’s distortion location was the only exploitable structure. Scenes only predicted distortions on 
the upcoming trial; there was no link between scene identity and the location of the distortion on 
that particular trial. With the exception that scene pairmates were never presented in 
back-to-back trials, upcoming scene identity was not predictable. All of the 24 critical scene 
stimuli were equally likely to be validly cued and (within a tolerance) to be valid cues. All eight 
locations were equally likely to be the learned target location relevant for the next trial. 
Distortions occurred at all eight locations with approximately equal probability. 
 
Task Parameters and Procedure. Participants performed eight consecutive runs of the search 
task in the MRI scanner with short breaks in between each run. On each trial of the task, a scene 
was presented on a gray background for 1.25 s. Every scene contained one local distortion, 
which occurred at one of eight isoeccentric locations (see Stimuli/Scene Distortions). The onset of 
scene presentation cued participants to begin their search. Participants were instructed to move 
their eyes to find each scene’s distortion as quickly as possible and to fixate the distortion when 
they found it. Participants’ entire eye movement trajectory was recorded, but for the purpose of 
generating feedback, the final 200 ms of their eye position was recorded and averaged 
excluding blinks. If this position was within 20 degrees of angular error from the center of the 
distortion location, the trial was considered correct. At the offset of scene presentation, an 
intertrial fixation interval began. This interval was randomly selected to be 4.75 s, 6.25 s, or 7.75 s 
with equal probability. For the first .75 s of the interval, the central fixation dot was green (if the 
previous trial was correct) or red (if the previous trial was incorrect), and for the rest of the interval 
it was white. Participants were explicitly instructed of the contingency between consecutive trials 
and were told to aim for 70% accuracy by relying on their memories to predict the location of 
upcoming distortions. They were also instructed to maintain fixation on the central fixation dot 
while preparing for the next trial. At the end of each run, participants were shown a feedback 
screen that reported their average accuracy for that run. Each run took a little over seven minutes 
to complete and contained 56 trials. The first trial in each run was discarded from behavioral 
analyses since it was not cued. Among the 55 cued trials per run, there were 41 validly cued 
trials, 7 invalidly cued trials, and 7 no-prediction trials. The 55 cued trials always consisted of two 
presentations each of the 24 critical scenes and one presentation each of 7 trial-unique novel 
scenes. Across all eight runs of the task, each of the 24 critical scenes was presented 16 times; 12 
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of these presentations were validly cued trials, 2 were invalidly cued trials, and 2 were 
no-prediction trials.  

Session 2: Retinotopic Mapping Task (fMRI) 

After completing the search task, each participant completed four identical retinotopic mapping 
runs. Stimuli and task parameters for the retinotopic mapping session were based on those 
reported previously (Benson & Winawer, 2018; Himmelberg et al., 2021; Favila et al., 2022), but a 
smaller portion of the visual field was mapped. During each functional run, bar apertures on a 
uniform gray background swept across the central 15 degrees of the participant’s visual field (a 
circular aperture with a radius of 7.5 degrees of visual angle). Each sweep began at one of eight 
equally spaced positions around the edge of the circular aperture, with the bar oriented 
perpendicularly to the direction of the sweep. During horizontal and vertical sweeps, the bar 
moved from one side of the aperture to the other at a constant rate. During diagonal sweeps, the 
bar moved at a constant rate until it reached the midpoint of the aperture; it then disappeared 
and was followed by a blank period that allowed for measurement of baseline neural activity. The 
bar position was incrementally updated every 1 s, such that a full-field sweep across the entire 
aperture took 24 s. Half-field sweeps took 12 s and subsequent blank periods took 12 s (24 s 
total). One functional run contained 8 back-to-back sweeps, taking 192 s in total. Bar apertures 
were a constant width and contained a grayscale pink noise background with randomly placed 
faces, scenes, objects, and words at a variety of sizes. Noise background and stimuli were 
updated at a frequency of 3 Hz. Each run of the task had identical timing, bar positions, sweep 
order, and stimuli. Participants were instructed to maintain fixation on a central dot and to use a 
button box to report whenever the dot changed color from blue to green or green to blue. Color 
changes occurred 24 times per run, and their timing was randomized for each participant and 
run.  

Eye Tracking Data Acquisition 
Eye tracking data were collected using an Eyelink 1000 Plus infrared video-based system by SR 
Research. For all sessions, the camera tracked the participant’s right eye at 1000 Hz in a 
head-stabilized position. During session 1, participants were stabilized in a chinrest and the 
camera was positioned below the task display. During session 2, participants were stabilized in 
the head coil and an MRI-compatible long-range enabled Eyelink 1000 Plus system was 
positioned outside the scanner bore and beneath the MRI display such that the participant’s eye 
could be tracked through the head coil-mounted mirror. In both sessions we calibrated the eye 
tracker using a 9 point calibration scheme at the start of each task block or scanner run, as 
needed. 

Eye Tracking Preprocessing  

Raw gaze data from session 1 and session 2 were preprocessed to identify saccades during task 
periods of interest. For session 1, we extracted gaze data from the response period of test trials 
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and converted the gaze coordinates from pixels into degrees of visual angle. We removed the 
200 ms prior to blinks and the 200 ms after blinks to remove artifacts. We used smoothed gaze 
data to define saccades as eye movements with a velocity of at least 30 degrees of visual angle/s 
and an amplitude of at least 0.25 degrees of visual angle (Li et al., 2021). Fixations were defined 
to be periods of stable gaze position occurring between saccades, excluding blinks. We 
corrected saccade trajectories based on the longest fixation of the pretrial central fixation period 
to account for drift. For our analyses, we dropped all saccades that landed within 1 degree of 
visual angle from central fixation and analyzed the remaining saccades (see Methods/Behavioral 
Analyses for more details). For session 2, we performed the same procedure, but on gaze data 
from the scene presentation period of search trials.  

MRI Acquisition 
All MRI data were acquired on a 3T Siemens Magnetom Prisma system located at Columbia 
University’s Zuckerman Mind Brain Behavior Institute. Functional images were acquired using a 
Siemens 64-channel head/neck coil and a multiband EPI sequence (repetition time = 1.5s, echo 
time = 30ms, flip angle = 65°, acceleration factor = 3, voxel size = 2 x 2 x 2mm, phase encoding 
direction = posterior to anterior). Sixty-nine oblique axial slices (14° transverse to coronal) were 
collected in an interleaved order. Each participant also underwent a T1-weighted anatomical scan 
(resolution = 1 x 1 x 1mm) using a magnetization-prepared rapid acquisition gradient-echo 
(MPRAGE) sequence. Double-echo gradient echo images were acquired to estimate the 
susceptibility-induced distortion present in the functional EPIs. In two participants, an opposite 
phase encoded field map sequence (anterior to posterior and posterior to anterior) was collected 
instead. 

MRI Preprocessing 
Results included in this manuscript come from preprocessing performed using fMRIPrep 21.0.0 
(Esteban, Blair, et al., 2019; Esteban, Markiewicz, et al., 2019; RRID:SCR_016216), which is based 
on Nipype 1.6.1 (Gorgolewski et al., 2011; RRID:SCR_002502). 

Preprocessing of B0 Inhomogeneity Mappings 

A B0 nonuniformity map (or fieldmap) was estimated from the phase-drift map(s) measure with two 
consecutive GRE (gradient-recalled echo) acquisitions. The corresponding phase-map(s) were 
phase-unwrapped with prelude (FSL 6.0.5.1:57b01774). 

Anatomical Data Preprocessing 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 
N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants et al., 2008, 
RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-reference was 
then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from 
ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid 
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(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using 
fast (FSL 6.0.5.1:57b01774, RRID:SCR_002823, Zhang et al., 2001). Brain surfaces were 
reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale et al., 1999), and the brain 
mask estimated previously was refined with a custom variation of the method to reconcile 
ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle 
(RRID:SCR_002438, Klein et al., 2017). Volume-based spatial normalization to one standard space 
(MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration 
(ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. The 
following template was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical 
template version 2009c (Fonov et al., 2009, RRID:SCR_008796; TemplateFlow ID: 
MNI152NLin2009cAsym). 

Functional Data Preprocessing 

For each of the BOLD runs per participant, the following preprocessing was performed. First, a 
reference volume and its skull-stripped version were generated using a custom methodology of 
fMRIPrep. Head-motion parameters with respect to the BOLD reference (transformation matrices, 
and six corresponding rotation and translation parameters) are estimated before any 
spatiotemporal filtering using mcflirt (FSL 6.0.5.1:57b01774, Jenkinson et al., 2002). The estimated 
fieldmap was then aligned with rigid-registration to the target EPI (echo-planar imaging) reference 
run. The field coefficients were mapped on to the reference EPI using the transform. BOLD runs 
were slice-time corrected to 0s for retinotopic mapping runs and 0.708s for memory-guided 
search runs using 3dTshift from AFNI (Cox & Hyde, 1997, RRID:SCR_005927). The BOLD 
reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which 
implements boundary-based registration (Greve & Fischl, 2009). Co-registration was configured 
with six degrees of freedom.  

Several confounding time series were calculated based on the preprocessed BOLD: framewise 
displacement (FD), DVARS and three region-wise global signals. FD was computed using two 
formulations following Power (absolute sum of relative motions, Power et al., 2014) and Jenkinson 
(relative root mean square displacement between affines, Jenkinson et al., 2002). FD and DVARS 
are calculated for each functional run, both using their implementations in Nipype (following the 
definitions by Power et al., 2014). The three global signals are extracted within the CSF, the WM, 
and the whole-brain masks. Additionally, a set of physiological regressors were extracted to allow 
for component-based noise correction (CompCor, Behzadi et al., 2007). Principal components are 
estimated after high-pass filtering the preprocessed BOLD time series (using a discrete cosine 
filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical 
(aCompCor). tCompCor components are then calculated from the top 2% variable voxels within 
the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are 
generated in anatomical space. The implementation differs from that of Behzadi et al. in that 
instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are subtracted a 
mask of pixels that likely contain a volume fraction of GM. This mask is obtained by dilating a GM 
mask extracted from the FreeSurfer’s aseg segmentation, and it ensures components are not 
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extracted from voxels containing a minimal fraction of GM. Finally, these masks are resampled 
into BOLD space and binarized by thresholding at 0.99 (as in the original implementation). 
Components are also calculated separately within the WM and CSF masks. For each CompCor 
decomposition, the k components with the largest singular values are retained, such that the 
retained components’ time series are sufficient to explain 50 percent of variance across the 
nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped from 
consideration. The head-motion estimates calculated in the correction step were also placed 
within the corresponding confounds file. The confound time series derived from head motion 
estimates and global signals were expanded with the inclusion of temporal derivatives and 
quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.5 mm 
FD or 1.5 standardized DVARS were annotated as motion outliers.  

The BOLD time series were resampled into standard space, generating a preprocessed BOLD 
run in MNI152NLin2009cAsym space. The BOLD time series were resampled onto the following 
surfaces (FreeSurfer reconstruction nomenclature): fsaverage, fsnative. All resamplings can be 
performed with a single interpolation step by composing all the pertinent transformations (i.e. 
head-motion transform matrices, susceptibility distortion correction when available, and 
co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 
performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize 
the smoothing effects of other kernels (Lanczos, 1964). Non-gridded (surface) resamplings were 
performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.8.1 (Abraham et al., 2014, RRID:SCR_001362), 
mostly within the functional processing workflow. Note that the analyses presented in this paper 
only make use of preprocessed BOLD data in native T1w and fsnative spaces. 

Copyright waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express intention 
that users should copy and paste this text into their manuscripts unchanged. It is released under 
the CC0 license. 

pRF Model Fitting 

pRF model fitting was conducted using vistasoft using an approach described by Dumoulin & 
Wandell (2008). We took the preprocessed BOLD time series from the retinotopic mapping task 
in native surface space and upsampled them to a temporal resolution of 1.0s to match the rate at 
which the bar stimulus moved. We then averaged them across runs. Using this average time 
series, we estimated the best fitting pRF for each vertex. Each pRF was modeled as a circular 2D 
Gaussian, parameterized by values x, y, and σ. The x and y parameters specify the center position 
of the 2D Gaussian in the visual field. These parameters can be re-expressed in polar 
coordinates: r (eccentricity), θ (polar angle). The σ parameter, the standard deviation of the 2D 
Gaussian, specifies the size of the receptive field. Stimulus images from the retinotopic mapping 
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task (Methods/Experimental Design and Procedure/Session 2: Retinotopic Mapping Task) were 
converted to contrast apertures. Candidate pRFs were multiplied pointwise by the stimulus 
apertures to yield a predicted time course of activation by the stimulus, which was then 
convolved with a double-gamma hemodynamic response function to predict the BOLD response 
in each vertex. Using an iterative coarse-to-fine fitting approach, we estimated the x, y, and σ 
parameters for each vertex that, when applied to the drifting bar stimulus, minimized the 
difference between the observed and predicted BOLD time series.  

Regions of Interest 

The hippocampus was defined bilaterally in each participant’s native anatomical space using 
Freesurfer. For some analyses, we divided this ROI into anterior and posterior components 
(Poppenk et al., 2013). We did this by taking a hippocampal ROI in MNI space and dividing it into 
anterior and posterior components at y = -21, following the convention in Poppenk et al. (2013). 
We then reverse-normalized this ROI into native T1 space and used the transformed 
anterior-posterior boundary in native space to segment each participant’s whole hippocampal 
Freesurfer ROI. We used this approach to ensure that our anterior and posterior hippocampal ROI 
summed to our original whole hippocampus ROI. 
 
Visual cortex regions of interest were defined by visualizing the pRF parameters on each 
participant’s native cortical surface and hand-drawing boundaries between visual field maps. For 
each of V1, V2, and V3, we drew boundaries at polar angle reversals, following established 
practice (Dougherty et al., 2003; Wandell et al., 2007). We combined bilateral V1, V2, and V3 
surface masks into a single early visual cortex (EVC) ROI. This ROI was projected to native T1 
space to create a volumetric EVC ROI for some analyses.  
 
We additionally defined several regions implicated in scene-processing to serve as control ROIs: 
PPA, RSC, and PHC. To define PPA, we selected the “CoS-places” mask from a published 
functional group atlas (Rosenke et al., 2021) and registered it to each participant’s native surface 
space. We then projected this surface-based ROI to native T1 space to create a volumetric ROI. To 
define RSC, we relied on a neurosynth contrast previously used in one of our papers (Aly & 
Turk-Browne, 2016a). We defined PHC anatomically, according to agreed upon protocols for 
segmenting the medial temporal lobe (see Aly & Turk-Browne, 2016b). Both RSC and PHC were 
defined in MNI space and then reverse-normalized into native T1 space for each participant. 
Finally, we defined the Dorsal Attention Network (DAN) to serve as a control ROI. To do this, we 
transformed the group-average 7 Network parcellation from Yeo et al. (2011) into native surface 
space and then native volumetric space and selected network 3. 

Behavioral Analyses 

We analyzed the end points of the first and last saccades executed during task periods of interest 
(see Methods/ Eye Tracking Data Acquisition and Methods/Eye Tracking Preprocessing for details 
about how gaze positions were estimated). Saccade end points were analyzed with respect to 
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each trial’s spatial locations of interest: the target location, the competitor location, and the 
control location. Target and competitor locations were defined based on associative learning in 
session 1. The control location was defined to be the same distance away from the target location 
as the competitor location, but in the opposite direction. Thus for target and competitor locations 
that were 180 degrees away, the control location was undefined. We computed several metrics 
with respect to these locations. First, we assigned each saccade to the target, competitor, or 
control locations if it was closer to that location than to any of the other studied locations (i.e. if 
the angular error between the saccade end point and the center of the relevant location was less 
than 22.5 degrees). We assessed the probability of these response types across conditions of 
interest for both the associative learning task and the search task. For the search task, we also 
analyzed the angular error between the saccade end point and the center of the distortion 
location as a continuous measure. Finally, for the search task, we also considered saccade 
accuracy. A saccade was considered accurate (alternatively referred to as a search success) if it 
fell within 22.5 degrees of the distortion location.  A saccade was considered an interference 
error if it fell within 22.5 degrees of the competitor location. Finally, a saccade was considered an 
“other error” if it fell in any of the locations other than the target or competitor location. 

Pattern Similarity Analyses 

To estimate the pattern of activity evoked by similar scenes, we conducted a voxelwise GLM 
analysis of each participant’s preprocessed time series data from the search task in native T1 
space. Each model contained a regressor of interest for each stimulus in the experiment (24 
critical scenes [12 pairs of similar scenes] and 56 novel scenes). Events within these regressors 
were constructed as boxcars with a duration of 1.25 s (scene presentation duration), convolved 
with a double-gamma hemodynamic response function. Six realignment parameters and cosine 
drift parameters were included as nuisance regressors to control for motion confounds and signal 
drift. No spatial smoothing was performed. We included all eight runs of the memory-guided 
search task in each GLM, representing 16 presentations of each of the 24 critical scenes, with the 
exception of one participant. One run was excluded from this participant because >10% of TRs 
had a framewise displacement of > 1mm. First level models were estimated using nilearn 
(Abraham et al., 2014) and contrasts for each of the 24 critical scenes versus baseline were 
computed. While regressors for the novel scenes were included in these models, these 
parameter estimates were not analyzed further. This procedure yielded t-maps representing the 
activation elicited by viewing each of the 24 critical scenes (12 pairs of similar scenes) for each 
participant.  
 
To compute scene pair pattern similarity, we calculated the Fisher z-transformed Pearson 
correlation between the t-maps for all unique pairwise combinations of the 24 scenes. For each 
stimulus category (e.g., arches), we averaged all the correlations between nonpairmate scenes 
that included a scene from that category (e.g., arch 1 and barn 1; arch 2 and barn 1, etc). We 
subtracted this value from the correlation of the two pairmate scenes from that category (e.g., 
arch 1 and arch 2). Using this metric, lower values indicate that scene pairmates are represented 
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more distinctly compared to other scenes and higher values indicate that scene pairmates are 
represented more similarly. To assess the overall tendency of a brain region to differentiate 
similar scenes, we conducted these analyses separately within brain regions of interest 
(hippocampus plus control regions) and averaged the scene pair pattern similarity values across 
the 12 scene pairs to produce one value per participant. To assess the relationship between 
scene separability and variables of interest, we sorted the scene pairs by their scene pair pattern 
similarity value in a particular ROI and divided them into more and less distinct halves. For some 
analyses, we considered scene pair similarity continuously; in this case, we normalized scene pair 
similarity values for an ROI within participants.  
 
In addition to our ROI-based analyses, we also conducted an exploratory whole-brain searchlight 
analysis that assessed the relationship between scene pair pattern similarity and behavior across 
the entire brain. For each participant, we computed our scene pair pattern similarity score in 
searchlights of radius 2 voxels, covering the entire brain in native T1 space. For each searchlight, 
we sorted scene pairs according to their scene pair similarity value into more and less distinct 
halves. We then calculated a paired t-statistic describing the difference in search error between 
these scene groups (equivalent to the analysis reported in Figure 3C, but conducted within 
searchlights). We transformed these native space t-maps into MNI space and spatially smoothed 
them with a 4mm Gaussian kernel. We then ran a permutation test using FSL’s randomise function 
(1000 permutations) on t-values falling within gray matter to produce uncorrected threshold-free 
cluster enhancement p values. 

Visual Cortex Preparatory Responses 

We examined preparatory BOLD responses during the inter-trial interval (ITI) period of the search 
task by first removing the responses evoked by the preceding scene presentation and then 
segregating residual ITI responses according to their visual field position. To remove the 
visually-evoked responses, we conducted a voxelwise GLM analysis of each participant’s 
preprocessed time series data from the search task in native surface space. (Note that we use the 
term “voxel” in the Results for convenience to readers, but pRF analyses are done on vertices in 
surface space rather than voxels in volume space). Each model contained two regressors of 
interest: one for presentations of the 24 critical scenes (12 pairs of similar scenes) and one for 
presentations of the novel scenes. These regressors and nuisance regressors were constructed 
using the same procedure as described in the Pattern Similarity Analyses subsection above, and 
the models were estimated using the same data inclusion criteria. We took the residual time 
series after estimating this model and z-scored each vertex across time and then each time point 
across vertices.  
 
Using these residual time series, we isolated the time points corresponding to the first 3 TRs of 
the blank ITI of the search task after accounting for hemodynamic lag. This corresponded to TRs 
4, 5, and 6 from the prior scene onset. We chose 3 TRs because all trials had at minimum 3 TRs 
for the ITI; this allowed us to keep the amount of data constant across trials that varied in ITI 
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duration. We averaged the residual time series across these TRs for each trial, generating one ITI 
BOLD response value per vertex per trial. We considered only valid trials for further analyses. To 
understand how these ITI responses corresponded to visual space, we organized these 
responses according to the values of the parameter estimates derived from the pRF model. We 
first selected the subset of EVC vertices that were potentially responsive to the 8 target locations 
in our experiment. We included vertices whose pRFs met 3 criteria: (1) they had eccentricity 
values between 0.5 and 10 degrees, indicating they were responsive to the display screen 
excluding central fixation; (2) the center of the 2D Gaussian was within 2σ of the circle along 
which target locations were aligned, indicating they were additionally responsive to target and 
competitor locations; and (3) their pRF model R2 was at least 0.1, indicating they exhibited spatial 
selectivity.  
 
To visualize the ITI BOLD response of vertices with different pRFs (Favila et al., 2022), we divided 
the selected vertices into 8 bins according to the polar angle distance between their pRF and the 
target memory location on the upcoming trial. We took each participant’s median ITI response 
within a bin before averaging across participants. This procedure produced a spatial response 
function that visualizes how strong the ITI response was in vertices coding for the upcoming 
target location and how quickly this response falls off over space. Note that for visualization 
purposes only, we visualized the same data at +180 and -180 degrees away, so that the target 
location appears centered. Visualizations examining competitor location responses during the ITI 
followed the same procedure but binned vertices according to their distance from the competitor 
location. As an alternative visualization, we also assigned each of the 8 angular distance bins the 
label “target”, “competitor”, “control”, or “other”, separately for each participant and trial. We then 
averaged the BOLD response separately for each of the four labels. 

Statistics 

We evaluated the statistical reliability of our behavioral and pattern similarity results using paired 
t-tests, repeated measures ANOVAs, and Pearson correlations. Reported p-values are two-tailed 
and evaluated at alpha = 0.05. For our statistical analyses examining visual cortex preparatory 
responses (Figures 4 and 5), we entered the BOLD response from the 8 pRF bins (defined 
above), for each valid trial and participant, into a mixed effects model. We first assessed the 
relationship between BOLD responses in different pRF locations and behavioral outcome. We did 
this by modeling an interaction between behavioral outcome (search success, interference error, 
or other error) and pRF location (target, competitor, control, other). We also performed follow-up 
analyses that separately assessed the effect of pRF location for search successes, interference 
errors, and all other errors. Similarly, for our analyses linking hippocampal scene separability and 
visual cortex preparatory responses, we used a mixed effects model to test the interaction 
between pRF location and scene separability in the hippocampus or other control ROI. When 
appropriate, we separately assessed the effect of pRF location for scenes that were more vs. less 
separable in a given ROI. We similarly considered the interaction between pRF location and 
univariate activity in the DAN. Univariate activity was estimated from the same GLM used for the 
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pattern similarity analyses (Methods/Pattern Similarity Analyses). T-statistics associated with the 
regressor for each scene were averaged over voxels in the DAN to provide univariate activity. All 
mixed effects models were implemented in the lme4 package for R. We evaluated the strength of 
interactions by performing likelihood ratio tests on nested additive models. Parameter estimates, 
standard errors, and p-values for individual predictors are also reported when relevant. All 
models included random intercepts per participant. Following best practices for statistical 
modeling (Barr et al., 2013), we started with maximal models and subsequently excluded random 
slopes to ensure that models converged and fits were non-singular.  

Data Availability 

Raw fMRI and behavioral data will be made available on openneuro.org at the time of publication. 

Code Availability 

Code to reproduce the analyses and figures will be made available on Github at the time of 
publication.  
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Supplement 

 

 
 

Supplementary Figure 1. Last saccade behavioral data from memory-guided visual search task (session 2). (A) 
Relative to the no-prediction condition, participants’ last saccade was more accurate in the valid condition (t31 = 9.08, p 
< 0.001) and less accurate in the invalid condition (t31 = -5.47, p < 0.001), indicating that participants were using memory 
to guide their search performance. Grey points and lines represent individual participant data. Blue points and error 
bars represent the across-participant mean and SEM. (B) The distribution of last saccade angular errors on valid trials. 
Angular errors are normalized by the target-competitor distance such that x = 0 is the target (and distortion) location, x 
= 1 is the competitor location, and x = -1 is the control location the same distance from the target as the competitor. 
While last saccades near the target location were most likely, the distribution is asymmetric toward the competitor. (C) 
Last saccade probabilities are plotted separately for the competitor location (x = 1 in (B)) and the control location (x = -1 
in (B)). Participants were significantly more likely to make their last saccade to the competitor location than to the 
control location on valid trials (t31 = 5.05, p < 0.001), suggesting that memory competition from the prior session 
persisted into the search task. Dots represent individual participant data and horizontal lines represent the 
across-participant mean. (D) How close the target and competitor locations were to each other did not modulate how 
likely participants were to make a last saccade to the competitor relative to the control location (F2,62 = 0.265, p = 
0.768). Bars represent across-participant mean and error bars represent SEM. *** p < 0.001 
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Supplementary Figure 2. Behavioral data from memory-guided visual search task (session 2) separated by 
target-competitor distance. (A) The distribution of first saccade angular errors on valid trials, separately for each 
target-competitor distance. Zero degrees of error indicates a saccade made directly towards the target. For 
target-competitor distances of 45 degrees, 90 degrees, and 135 degrees, angular error is directional, such that positive 
values are toward the competitor and negative values are in the opposite direction toward a control location an equal 
distance away from the target as the competitor. For 180 degree pairs, no control location can be defined, so angular 
errors are collapsed across direction. Highlighted green areas represent the saccades that are identified to be at the 
target location. Orange and gray highlighted areas represent the saccades that are identified to be at the competitor 
and control locations, respectively. See Figure 2D for data normalized such that all target and competitor distances can 
be visualized at the same time. (B) Data from the target, competitor, and control shaded zones in panel A are re-plotted 
as probabilities for each participant. For every target-competitor distance, first saccades are made more often to the 
target than the competitor location. For the distances for which a control location can be defined, first saccades are 
made more often to the competitor than the control location. Dots represent individual participant data and horizontal 
lines represent the across-participant mean. (C) Same as (A) but for the last saccade. (D) Same as (B) but for the last 
saccade. ** p < 0.01; *** p < 0.001  

41 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2025. ; https://doi.org/10.1101/2023.10.09.561548doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.09.561548
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

Supplementary Figure 3. Distinct hippocampal representations of competing scenes predict multiple measures of 
memory-guided eye movements. (A) The relationship between pattern distinctiveness in the hippocampus and search 
error on the next trial (t31 = -3.46, p = 0.0016), visualized without centering data within participants. Search error was 
quantified as the angular error between the first saccade endpoint and the distortion on valid trials. See Figure 3C for 
the same search error values centered within participants. (B) The relationship between pattern distinctiveness in the 
hippocampus and behavior was robust to binarizing search error (measured continuously in degrees) into search 
accuracy. Scene pairs that were more distinct in the hippocampus were followed by first saccades that were more 
accurate on the next trial (t31 = 2.04, p = 0.049). Search accuracy was quantified as the proportion of trials with first 
saccade search errors less than 22.5 degrees. (C) The relationship between pattern distinctiveness in the 
hippocampus and behavior was robust when considering search error on the last saccade rather than the first saccade. 
Scene pairs that were more distinct in the hippocampus were followed by last saccades that were closer to the 
distortion location on the next trial (t31 = -3.01, p = 0.005). Search error was quantified as the angular error between the 
last saccade endpoint and the distortion on valid trials and visualized after centering search error within participants. 
For panels A-C, small dots represent individual participant data. Large points and error bars represent the 
across-participant mean and SEM. (D) The relationship between pattern distinctiveness in the hippocampus and 
behavior was robust when considering pattern distinctiveness as a continuous rather than binary (more/less) measure. 
Scene pairs that were more distinct in the hippocampus were followed by first saccades that were closer to the 
distortion on the next trial (beta = 1.98, SE = 0.834, p = 0.017). The purple line and shading represent the slope and 
standard error of the fixed effect from a mixed model predicting search error from scene pair pattern similarity 
(normalized within participants). Gray lines represent the best fitting line to each participant’s data. * p < 0.05; ** p < 0.01 
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Supplementary Figure 4. Relationship between representations of competing scenes and memory-guided eye 
movements in other brain regions. (A) Average scene pair pattern similarity in anterior and posterior hippocampus. (B) 
Scene pair pattern similarity in the anterior hippocampus, but not posterior hippocampus, predicted more accurate 
(lower error) saccades on valid trials (anterior hippocampus: t31 = -4.33, p < 0.001; posterior hippocampus: t31 = -0.11, p = 
0.915). (C) Average scene pair pattern similarity in EVC and HIPP (as reported in the main text), PPA, RSC, and PHC. (D) 
Scene pair pattern similarity did not predict saccade error on valid trials in PPA (t31 = -0.14, p = 0.89), RSC (t31 = 0.90, p = 
0.37), or PHC (t31 = -1.32, p = 0.20). For A-D, small dots represent individual participant data. Large points and error bars 
represent the across-participant mean and SEM. (E) Whole-brain searchlight clusters where lower scene pair pattern 
similarity (more distinct representations) was associated with lower search error on valid trials. Clusters are visualized 
for exploratory purposes at an uncorrected p value threshold of 0.01. Clusters were found in the right lateral occipital 
lobe (left) and the right hippocampus (right). ** p < 0.01  
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Supplementary Figure 5. Preparatory coding in early visual cortex as a function of behavioral outcome 
defined by the first saccade of search. We directly compared EVC BOLD activity during the ITI at pRFs 
corresponding to the target location (“targ”), competitor location (“comp”), control location (“cont”), and all 
other locations (“other”) for three behavioral outcomes: search successes, interference errors, and other 
errors. We defined these outcomes according to the participant’s first saccade of the search interval. Note 
that because behavioral outcomes are defined here with respect to the first saccade, trials may ultimately end 
in successful search even if the first saccade was an error. The interaction between pRF location and 

behavioral outcome was significant (  = 18.2, p = 0.0058). This interaction was driven by preferential target  χ
6
2

activation for search successes, preferential competitor activation for interference errors, and weak 
preferential target activation for other errors. Differences between this figure and Figure 4D, notably in the 
“other errors” condition, are due to saccades that were initially errors but ultimately corrected. For simplicity, 
only the results for pairwise comparisons between target, competitor, and control locations are shown. Bars 
and error bars represent the across-participant mean and SEM. *p < 0.05; **p < 0.01  
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Supplementary Figure 6. Brain regions outside the hippocampus are not associated with differences between target 
and competitor activation in visual cortex. (A) We repeated the analyses in Figure 5, but assessed scene 
distinctiveness in the anterior and posterior hippocampus separately. There was no evidence for an interaction 

between hippocampal long-axis position, scene pair distinctiveness, and visual cortex pRF location (  = 4.75, p = 0.69).  χ
7
2

Instead, we observed a qualitatively similar relationship in the anterior (  = 7.17, p = 0.067) and posterior hippocampus  χ
3
2

(  = 6.85, p = 0.077) as in the whole hippocampus: comparable target and competitor activation when scene  χ
3
2

representations were less distinct and higher target than competitor activation when scene representations were more 
distinct (Fig. 5C). (B) We repeated the analyses in Figure 5, but assessed the effect of scene distinctiveness in PPA, 
RSC, and PHC in predicting the ITI response in EVC. For PPA and PHC, there was no interaction between EVC pRF 

location (target/competitor/control/other) and PPA/PHC pattern distinctiveness (PPA:  = 1.32, p = 0.725; PHC:  =  χ
3
2  χ

3
2

4.21, p = 0.240). In RSC, there was a significant interaction (  = 9.51, p = 0.023), but the pattern of results was unlike  χ
3
2

those found in the hippocampus. Finally, we repeated the analyses in Figure 5, but assessed the effect of univariate 
activity in the dorsal attention network on the ITI response in EVC. There was no interaction between EVC pRF location 

(target/competitor/control/other) and univariate DAN activity (  = 3.46, p = 0.326). Note that we focus on the  χ
3
2

interaction with scene separability or univariate activity because main effects of target/competitor/control/other 
locations are not of primary interest in this context. Bars and error bars represent the across-participant mean and 
bootstrapped SEM. *p < 0.05 
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