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Experience-dependent hippocampal pattern
differentiation prevents interference during
subsequent learning

Serra E. Favila1, Avi J.H. Chanales' & Brice A. Kuhl"2

The hippocampus is believed to reduce memory interference by disambiguating neural
representations of similar events. However, there is limited empirical evidence linking
representational overlap in the hippocampus to memory interference. Likewise, it is not fully
understood how learning influences overlap among hippocampal representations. Using
pattern-based fMRI analyses, we tested for a bidirectional relationship between memory
overlap in the human hippocampus and learning. First, we show that learning drives
hippocampal representations of similar events apart from one another. These changes are not
explained by task demands to discriminate similar stimuli and are fully absent in visual
cortical areas that feed into the hippocampus. Second, we show that lower representational
overlap in the hippocampus benefits subsequent learning by preventing interference between
similar memories. These findings reveal targeted experience-dependent changes in
hippocampal representations of similar events and provide a critical link between memory
overlap in the hippocampus and behavioural expressions of memory interference.
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any of the memories we accumulate share similar

features. This similarity can lead to interference or

confusability during memory retrieval. Computational
models of memory propose that the hippocampus plays a critical
role in minimizing the overlap of similar events such that retrieval
interference is avoided!~®. However, the relationship between
event overlap in the hippocampus and learning is potentially
bidirectional: lower overlap should prevent interference! =%, but
learning and behavioural experience may also reduce overlap’.
Surprisingly, there is limited evidence directly linking the overlap
of hippocampal memory representations to behavioural
expressions of memory interference; likewise, it is not well
understood how, when or why learning reduces overlap of
hippocampal representations.

Across rodent and human studies, there are many demonstra-
tions of hippocampal activity patterns changing as a function of
learning and behavioural experience®~!®. Intuitively, these
experience-dependent changes might reflect discrimination
demands or event outcomes. That is, if A and A’ are similar
events that predict the same outcome or require the same
behaviour, their representations should converge over the course
of learning because differences between the events are
uninformative’. However, if A and A’ predict different
outcomes or require different behaviour, their representations
should diverge with learning’. Although there are examples of
learning-related divergence of hippocampal representations in the
absence of explicit discrimination demands—suggesting that
discrimination demands may not fully account for learning-
related changes!'! —targeted manipulations are required to gain a
clear understanding of whether or how behavioural
discrimination demands influence the overlap of hippocampal
representations.

To the extent that hippocampal representations diverge with
learning, there may be multiple mechanisms that underlie these
changes. The mechanism most frequently associated with
reducing memory overlap is pattern separation. Pattern separa-
tion refers to an orthogonalization of hippocampal activity
patterns that is thou%ht to occur automatically and rapidly during
event encodingz’s’1 24, Importantly, pattern separation is
believed to reduce global similarity among all event
representations, such that perfect separation of A and A" would
render their representations orthogonal: no more similar to each
other than to other events (e.g., events B and C). However, event
representations may also continue to diverge as a result of a more
targeted differentiation process that pushes similar events apart
from one another in representational space by eliminating shared
features®®. Putatively, differentiation is an adaptive response to
the coactivation of similar memories during learning—that is,
differentiation is triggered by similar memories encroaching on
one another during learning®>. Because differentiation refers to
very targeted representational changes, it has the potential to
produce more dramatic reductions in memory overlap than
would occur via pattern separation. Namely, if A and A’ are
sufficiently differentiated, their representations may become less
similar to each other than to events B and C. As such,
differentiation can push representations past the point of
orthogonalization.

Regardless of the mechanism that reduces overlap among
hippocampal representations, the functional consequence of
reduced overlap is thought to be that it protects memories from
interfering with one another. Several findings provide indirect
support for this idea. For example, rodent hippocampal
neurogenesis, which is thought to be critical for pattern
separation, is necessary?® and sufficient?” for discriminating
similar spatial contexts. Similarly, hippocampal NMDA receptors
are necessary for both pattern separation and spatial context
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discrimination??. Age-related memory decline in rodents*® and
humans?® has also been linked to reduced hippocampal pattern
separation. In functional magnetic resonance imaging (fMRI)
studies of healthy adults, dissimilarity of hippocampal activit
patterns has been correlated with successful remembering®>3C.
However, prior studies have not provided direct evidence for a
relationship between the overlap of individual hippocampal
representations and behavioural expressions of interference
between those memories. Thus, to the extent that learning
reduces the overlap of hippocampal representations, a critical
validation of these changes is that they prevent memory
interference.

In the current experiment, we tested for this putative
bidirectional relationship between hippocampal representational
overlap and learning in humans. Subjects performed a multi-day
associative learning task that included pairs of highly similar
visual stimuli (images of scenes). Some scene pairs were
associated with distinct outcomes (different face images),
requiring subjects to discriminate between the similar scenes to
recall the associated face, whereas other scene pairs were
associated with the same outcome (same face images). In a third,
baseline condition scene pairs were exposed to subjects in a task
that did not involve any associative learning. We used fMRI
multi-voxel pattern analyses to test whether and how associative
learning changed the overlap of scene pair representations in the
hippocampus. Subjects then performed a new associative learning
task with the same scene stimuli, allowing us to test whether
learning-related changes in the overlap of hippocampal repre-
sentations influenced subsequent memory interference between
similar scenes. We show that associative learning drives
hippocampal representations of similar stimuli away from one
another, and that these reductions in representational similarity
are associated with reduced interference during later learning.
These findings reveal experience-dependent hippocampal pro-
cesses that adaptively differentiate similar events such that
memory interference is avoided.

Results
Human subjects performed a learning task spanning 2 days
(Fig. 1, Supplementary Fig. 1 and Methods section). On day 1,
subjects learned 48 scene-face associations through repeated
study-test cycles. To create interference, the 48 scenes comprised
24 pairs of perceptually and semantically similar scenes
(‘pairmates’; Fig. 1a). For half of the scene pairs, pairmates were
associated with different faces (Different Face condition), creating
a demand to discriminate between similar scenes (so as to retrieve
the correct face). For the other half of pairs, pairmates were
associated with the same face (Same Face condition), meaning
that there was no behavioural demand to discriminate between
the pairmates. An additional 24 scenes (12 pairs) were viewed by
subjects on day 1 in an exposure task with no associated faces or
learning requirements (No Face condition; Fig. la and
Supplementary Fig. 1a). None of the scene pairmates in any
condition were ever shown simultaneously, meaning any
discrimination between pairmates was necessarily memory based.
On day 2, subjects repeated an abbreviated training session and
then entered the fMRI scanner. During scanning, subjects viewed
the scenes from all conditions (Different Face, Same Face, No
Face) many times while performing a cover task of detecting
infrequent red crosses (Fig. 1b). fMRI data were used to estimate
the pattern of neural response to each scene, allowing us to test
whether prior learning influenced representational overlap
between scene pairmates. After scanning, subjects completed
three study-test cycles of a scene-object learning task where all of
the scenes presented during fMRI scanning were paired with a
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unique and novel object (Fig. 1c and Supplementary Fig. 1b). On
each scene-object test trial, subjects were presented with a scene
and three object choices: the target object (correct), the object that
was associated with the scene’s pairmate (‘pairmate foil’;
interference error) and an object that was associated with a
nonpairmate scene (‘nonpairmate foil’; other error).

Behaviour. Subjects completed a minimum of six scene-face test
rounds (mean =7.78) on day 1 and a minimum of two rounds on
day 2 (mean=2.22). Subjects were required to reach 100%
accuracy on both days. During fMRI scanning, subjects indicated
whether visual targets (red crosses) were present or absent with
high accuracy (mean = 97.25%).

a
Scene—face learning

No face Different face

Same face

b
fMRI scanning

500 ms

C
Scene-object learning

Correct association

Figure 1 | Experimental design. (a) On day 1, subjects learned scene-face
associations that were constructed using pairs of similar scenes
(pairmates). Pairmates were associated with: no image at all (No Face
condition), different faces (Different Face condition), or a common face
(Same Face condition). Note that pairmates are shown side-by-side to
illustrate the design, but subjects never saw any of the scene pairmates
simultaneously. (b) During fMRI scanning on day 2, subjects viewed the
scenes while performing an orthogonal visual target detection task.

(c) After scanning, subjects learned scene-object associations where each
scene was paired with a unique object. Memory for these associations was
probed using a forced choice associative memory test. Interference errors
occurred when subjects selected an object that had been paired with the
scene's pairmate (indicated by grey arrows). See also Supplementary Fig. 1
and Methods section.

We used mixed-effects logistic regression to test whether
scene-object memory was influenced by prior scene-face learning
condition. Accuracy on each scene-object trial was modelled as a
function of scene-face condition, scene-object test repetition
(1-3), and scene subcategory (indoor versus outdoor). There was
a significant main effect of scene-face condition (33 = 17.41,
P<0.001; Supplementary Fig. 2a). Linear contrasts revealed
facilitation in scene-object memory for scenes from the Different
Face condition versus the Same Face (ff=1.12, s.e.=0.26,
z=4.27, P<0.001) and No Face conditions (f=0.91,
s.e.=0.22, z=4.07, P<0.001). Thus, at a behavioural level, the
demand to discriminate similar scenes during scene-face learning
benefitted later scene-object learning. There was also a significant
main effect of test repetition (33 = 33.81, P<0.001), with
accuracy increasing across the three scene-object test cycles
(f=1.20, s.e.=0.14). There was no main effect of scene
subcategory (y2 = 0.13, P=0.72). Notably, subjects committed
interference errors more often than other errors during scene-
object learning (F; ;7; =33.12, P<0.001; Supplementary Fig. 2b),
confirming that our paradigm was effective at inducing
interference.

Learning reduces overlap of hippocampal representations.
Next, we considered whether scene-face learning influenced
the representational overlap of scene pairmates. To compute
representational overlap, we correlated each scene’s multi-voxel
activity pattern (see Methods section) with the activity pattern
for every other scene in the same condition, including the
scene’s pairmate. As a validation of our measure’s sensitivity,
we expected scene pairmates to be associated with greater
neural similarity than nonpairmates. For example, ‘castle 1" and
‘castle 2’ should have more overlapping neural activity patterns
than ‘castle 1’ and other scenes (Fig. la). We considered
three regions of interest (ROIs; Fig. 2a): scene-preferring voxels
within the hippocampus (HIPP), scene-preferring voxels in
medial ventral temporal cortex (parahippocampal place area;
PPA), and early visual cortex (EVC). Voxelwise scene preference
was evaluated using data from an independent category localizer
scan (see Methods section).

In the No Face condition, pairmate similarity was significantly
greater than nonpairmate similarity in EVC (t;; =340,
P=0.0034), PPA (t;;=2.30, P=0.034) and HIPP (¢, =2.64,
P=0.017). Importantly, this indicates that each of our ROIs
exhibited baseline sensitivity to the perceptual and/or semantic
similarity of pairmates. For subsequent analyses, we focus on the
difference between pairmate and nonpairmate similarity (herein-
after, scene pair difference score) as a critical measure of the
representational structure of scenes (Fig. 2a). Note that if
pairmates were orthogonally coded—coded as if they were two
unrelated scenes—this would correspond to a scene pair
difference score of 0.

To test whether scene-face learning influenced scene pair
difference scores, separate one-way analysis of variances (ANO-
VAs) were applied to each ROI. The effect of learning condition
on scene pair difference score was highly robust in HIPP
(F34=7.75, P=0.0017), but absent in EVC (F,3,=0.074,
P=0.93) and PPA (Friedman y3 =2.11, P=0.35; Fig. 2b).
There was also a significant interaction between ROI and learning
condition on scene pair difference score (F, g3 = 3.70, P=0.0087).
In HIPP, scene pair difference scores were significantly lower in
the Different Face condition than in the No Face condition
(t;; = —2.31, P=0.033). Surprisingly, difference scores were also
significantly lower in the Same Face condition than in the No
Face condition (t;; = —3.79, P=10.0015). That is, both learning
conditions elicited decreases in the overlap of pairmate
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Figure 2 | Learning reduces representational overlap in the hippocampus. (a) ROIs included scene-preferring voxels in hippocampus (HIPP),
parahippocampal place area (PPA) and early visual cortex (EVC). Note: we use 'HIPP’ to specifically refer to the ROl we used, and not to the hippocampus
in general. ROls are displayed on the right hemisphere of the Freesurfer average cortical surface in the Figure, but were defined bilaterally in each subject's
native space for all analyses. For each subject, a neural activity pattern was estimated for each scene. Neural similarity was operationalized as Fisher z-
transformed Pearson’s correlations between scene patterns. For each scene pair, a scene pair difference score was computed by subtracting the mean
within-condition nonpairmate similarity from the pairmate similarity. This difference score reflected the relative representational distance between
pairmates. (b) Prior learning (Different Face and Same Face conditions) decreased representational overlap between pairmates (lower scene pair difference
scores) in HIPP (main effect of scene-face condition: F,34=7.75, P=0.0017), but not in PPA (Friedman y3 = 2.11, P=0.35) or EVC (F,3,=0.074,
P=0.93). (c¢) For the Different and Same Face conditions, decreased representational overlap (lower scene pair difference score) was most evident in
voxels with the greatest scene selectivity (F;34=3.98, P=0.028). Plotted data represent mean + s.e.m. across subjects. See also Supplementary Fig. 3.

representations, relative to nonpairmate representations. If any-
thing, scene pair difference scores were marginally lower in the
Same Face condition than the Different Face condition
(t;;= —1.82, P=0.087) despite the fact that discrimination
demands were only present in the Different Face condition.
When only considering scene pairs associated with correct
(interference-free) scene-object memory, scene pair difference
scores in HIPP were significantly lower in the Same Face
condition than Different Face condition (t;; = — 2.34, P=10.032;
Fig. 3b). Learning-related decreases in scene pair difference scores
reflected a combination of increased similarity among nonpair-
mates and decreased similarity of pairmates (Supplementary
Fig. 3a), indicating that learning had opposing influences on
pairmate and nonpairmate similarity.

While hippocampal scene pair difference scores were sig-
nificantly greater than zero in the No Face condition, this effect
was eliminated in the Different Face condition (t;;= — 0.18,
P=0.86) and significantly reversed in the Same Face condition
(t;7y= —2.55, P=0.021). That is, when two similar scenes were
paired with the same face, their hippocampal representations
became less similar to each other than to nonpairmate scenes.
Strikingly, despite this negative scene pair difference score in
HIPP, the same stimuli were associated with a significantly
positive difference score in EVC (t;;=3.55, P=0.0025) and a
numerically positive score in PPA (W, =84.0, P=0.96).

To determine whether changes in scene pair difference scores
were selective to scene-preferring hippocampal voxels, we
repeated the same analysis on hippocampal voxels that varied
in scene selectivity. Specifically, for each subject we divided
hippocampal voxels into terciles from least to most scene-
preferring, based on data from the independent localizer scan. An
ANOVA with factors of learning condition (Different Face and
Same Face) and scene selectivity of voxels (terciles) revealed a
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significant main effect of tercile on scene pair difference score
(Fy34 =3.98, P=0.028), with the largest reduction in scene pair
difference score observed in the most scene-preferring hippo-
campal voxels (Fig. 2c). Thus, scene-face learning preferentially
altered representational structure in the hippocampal voxels with
the strongest preference for scenes.

Learning-driven differentiation prevents later interference.
Having established that scene-face learning reduced representa-
tional overlap of scene pairmates in the hippocampus, the second
objective was to test whether lower representational overlap
protected memories from interference during subsequent scene-
object learning. Interference errors were defined as scene-object
test trials where subjects mistakenly matched a given scene with
the object that was associated with its pairmate (pairmate foil;
Fig. 1c). For example, after learning that ‘castle 1’ is paired with
‘camera’ and ‘castle 2’ is paired with ‘guitar,’ an interference error
would occur if a subject incorrectly retrieved ‘guitar’ when cued
with ‘castle 1.” These interference errors constituted the majority
of error trials (Supplementary Fig. 2b).

We used mixed-effects logistic regression to test whether scene
pair difference scores in the Different and Same Face conditions
predicted binary memory outcomes on the scene-object memory
test: correct retrieval of the target associates versus interference
errors (either 1 or 2 interference errors for a given pair). The full
additive model included scene pair difference score, prior scene-
face condition, scene—object test repetition and scene subcategory
as predictors. Critically, there was a significant main effect of
hippocampal scene pair difference score on scene—object memory
(¥ = 4.71, P=0.030). Specifically, lower scene pair difference
scores predicted reduced interference (higher accuracy) during
subsequent scene-object learning (f= —2.01, s.e.=0.87;
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Figure 3 | Learning-driven decreases in representational overlap prevent interference during future learning. (a) In a logistic regression analysis, lower
hippocampal scene pair differences scores (lower representational overlap) in the Same Face and Different Face conditions predicted resistance to
interference during scene-object learning (sz = 4.71, P=0.030). Each point represents an individual scene pair difference score from scene-preferring
hippocampal voxels pooled across subjects. Lines and shading indicate logistic regression fits and standard errors for each condition. (b) As an alternative
visualization of a, mean scene pair difference scores are shown as a function of scene-face condition (Same Face, Different Face) and subsequent scene-
object memory (correct versus interference). Data are averaged across scene-object test repetition. (€) Scene pair difference score interacted with test

repetition in predicting subsequent scene-object memory (2 = 5.96, P=0.015): scene-object interference errors in later test repetitions were associated
with larger scene pair difference scores than errors in early test repetitions. Scene pair differences scores are averaged across the Same Face and Different
Face conditions for each test repetition. For b and ,c plotted data represent mean *s.e.m. across subjects. See also Supplementary Figs 4 and 5.

Fig. 3a,b and Supplementary Figs 4 and 5 for related analyses).
Importantly, this relationship was absent in EVC (y?<0.01,
P=098) and PPA (3} =0.30, P=0.59). Moreover, when
considering the raw correlation between pairmates (as opposed
to the scene pair difference score), the relationship in HIPP
remained significant (;(f = 4.85, P=0.028), whereas raw non-
pairmate correlations did not predict accurate memory versus
interference errors (33 = 0.59, P= 0.44; Supplementary Fig. 4a).

Because scene-object memory was probed across three test
cycles, we also tested whether the relationship between scene pair
difference scores and scene-object memory varied across the test
session. We added an interaction term between hippocampal
scene pair difference score and scene-object test repetition to our
model and tested this model against the additive model above.
Indeed, there was a significant interaction (X% = 5.96, P=10.015).
Specifically, the relationship between scene pair difference score
and subsequent scene-object memory became stronger across test
repetitions (f = — 2.64, s.e. = 1.06; Fig. 3¢). Pairs associated with
interference errors that occurred later in scene-object learning
(after more opportunities for study) were characterized by
relatively greater representational overlap than those associated
with earlier interference errors (Fig. 3c and Supplementary
Figs 4b and 5 for related analyses).

Discussion

Theoretical and computational perspectives have argued that
overlap of neural activity patterns in the hippocampus is related
to memory interference!®. Nevertheless, there remains
surprisingly little evidence directly linking interference between
individual memories to the overlap of their hippocampal
representations. Moreover, there is no clear understanding of
how representational overlap in the hippocampus is influenced by
learning experience and behavioural demands. Here using
pattern-based fMRI measures of hippocampal memory overlap
in humans, we provide data to address both of these open
questions. First, we show that associative learning reduced
overlap between hippocampal representations of highly similar
visual stimuli. Critically, these learning-induced reductions in
memory overlap were at least as robust when similar stimuli
predicted the same outcome (Same Face condition) as when they

predicted different outcomes (Different Face condition),
indicating that they were not explained by task demands or
predicted outcomes. Finally, learning-induced reductions in
representational overlap were adaptive: lower overlap of scene
pairmates predicted reduced interference between those stimuli
during subsequent associative learning. These findings provide
critical support for the argument that overlap among
hippocampal  representations  contributes to  memory
interference! %, but challenge current ideas concerning how
hippocampal representations of overlapping experiences change
with learning.

To characterize how learning-influenced memory overlap, we
measured the representational structure derived from neural
activity patterns®!. Specifically, we considered the overlap
(correlation) of activity patterns for scene pairmates relative to
the overlap of nonpairmates—what we refer to as the scene pair
difference score. Focusing on the relative position of pairmates
versus nonpairmates in representational space greatly facilitates
comparisons across brain regions or conditions that might differ
in terms of raw correlation values>2. For example, although HIPP,
PPA and EVC were associated with different mean raw
correlation values (Supplementary Fig. 3a,c), across these
regions there was a common representational structure in the
No Face condition wherein scene pairmates were more similar to
each other than to nonpairmates, as would be expected. However,
within the hippocampus—and only the hippocamus—this
structure changed with learning. Namely, there was a marked
decrease in the relative overlap of pairmate representations in the
Different and Same Face conditions (lower scene pair difference
scores). That is, learning drove pairmates apart from one another
in representational space. These changes in representational
structure are illustrated with multidimensional scaling in Fig. 4b,
using sample data and stimuli from our experiment. As can be
seen in the Figure, pairmates are clustered together in
representational space in the baseline state (No Face condition).
With learning, this clustering is eliminated or reversed, as
pairmates are differentiated from one another.

What mechanism accounts for the learning-related changes we
observed? One possibility is that, relative to the No Face
condition, the Same and Different Face conditions simply
demanded greater attention to the scenes. While it is probable
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that attention to the scenes differed across conditions, our full
pattern of results is not easily explained in terms of differences in
attention. First, reductions in representational overlap were
completely absent in EVC and PPA—regions that are the most
likely candidates to reflect modulations of visual attention®>3%, In
this regard, the selectivity of our results to the hippocampus is
very important. Second, because the Different Face condition
required subjects to discriminate between similar scenes,
attentional demands should have been higher in the Different
Face condition than the Same Face condition. Yet,
representational overlap was, if anything, lower in the Same
Face condition than the Different Face condition. Finally, an
attention-based account does not explain why we observed a
negative scene pair difference score in the Same Face condition (a
point we elaborate on below).

Comparing results in the Same Face and Different Face
conditions also helps to rule out other accounts of our findings.
As previously described, if reduced hippocampal overlap was
driven by discrimination demands or by the predicted event
outcomes (that is, the faces associated with the scenes), we would
have expected decreased overlap in the Different Face condition
and increased overlap in the Same Face condition”!>3>, While we
did observe this pattern of results outside of the hippocampus
(Supplementary Fig. 6b), the results in the hippocampus were
clearly incompatible with this account. Moreover, when also
considering that the reduction in representational overlap in the
hippocampus was strongest in voxels that were independently
identified as scene preferring, the most parsimonious argument is
that representational changes were related to the scene images
themselves and not the outcomes (faces) associated with the
scenes.

Another critical aspect of our results is that scene pairs
in the Same Face condition were associated with negative
scene pair difference scores. In other words, hippocampal
representations of pairmates became less similar to each
other than to nonpairmate scenes. For example, ‘barn 1’ became
less similar to ‘barn 2’ (its pairmate) than to ‘gazebo 2’ and
‘library 2’ (nonpairmates; Fig. 2a). As illustrated in Fig. 4b, this
corresponds to a repulsion of pairmates away from one another
in representational space. This paradoxical finding was clearly a
result of learning because we observed precisely the opposite
effect—a positive scene pair difference score, or pairmate
clustering (Fig. 4b)—in the No Face condition. Moreover, it is
striking that the Same Face condition yielded a negative
scene pair difference score in HIPP despite the scene pair
difference score remaining strongly positive in EVC, and
numerically positive in PPA. Thus, this flip in representational
structure was selective to the hippocampus. Importantly, a
negative scene pair difference score is not explained by standard
accounts of pattern separation because perfect pattern separation
should only produce orthogonalization of activity patterns. For
example, if ‘barn 1’ and ‘barn 2’ were orthogonally coded, they
would each be represented as unique scenes, with ‘barn 2’ no
more similar—and no less similar—to ‘barn 1’ than to other
scenes. This would produce a scene pair difference score of 0 and
would correspond to pairmates being randomly distributed in
representational space. Thus, the negative scene pair difference
score in the Same Face condition is uniquely consistent with a
differentiation account. For this reason, the fact that we
considered pairmate similarity relative to nonpairmate similarity
was a critical feature of our analysis. To be clear, however, we do
not argue that pattern separation was absent in our experiment.
Rather, while some degree of pattern separation likely occurred
during initial encoding, we argue that the learning-induced
reductions in representational overlap that we observed reflect an
additive effect of differentiation?’.
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Figure 4 | Schematic illustration of hippocampal differentiation. (a)
Representational overlap between scene pairmates can be conceptualized
in terms of shared feature units. Here, each scene representation (black
circle) is composed of active units (purple circles). Before learning (that is,
in the ‘Baseline’ or No Face condition), pairmate representations share
common features, as reflected by overlap of the black circles. After learning,
however, the pairmate representations diverge, with shared units ‘dropping
out’ of the representation. (b) The representational distance (overlap)
between pairmate and nonpairmate representations can be visualized using
multidimensional scaling (MDS). Here, neural similarity measures from
three No Face scene pairs and three Same Face scene pairs, drawn from a
single subject, are projected into a two-dimensional representational space.
In the baseline state (No Face condition), the representational distance
between pairmates (for example, A and A’) is lower, on average, than
between nonpairmates (for example, A and C). That is, pairmates are
‘clustered’ in representational space. This pairmate clustering corresponds
to a positive scene pair difference score. However, learning produces
differentiation, pushing pairmate representations apart from one another in
representational space and eliminating parimate clustering. After
differentiation (Same Face condition), pairmates systematically occupy
opposing positions in representational space, resulting in greater
representational distances between pairmates than nonpairmates. This
corresponds to a negative scene pair difference score.

Why would differentiation occur when two scenes predict the
same outcome? Putatively, differentiation occurs when two
overlapping representations are simultaneouslz active and
compete to establish a representational foothold?>. Competition
of this form can be created by pairing multiple stimuli with a
common associate’®3”. Here when two scenes were associated
with a common face, this may have increased the probability that
presentation of one of the scenes (for example., ‘barn 1°) triggered
reactivation of the pairmate scene (‘barn 2’). The hippocampus
would resolve the competition between the similar scenes by
eliminating shared features (Fig. 4a), thereby selectivelsy
differentiating the two representations from one another?.
Although the idea that simultaneous activation triggered
differentiation in the present study is speculative, this account
can explain our full set of findings and is consistent with existing
theoretical models®>*”38 and other recent empirical observations
of competition-driven memory weakening®>3°~41,

Our finding of learning-induced hippocampal differentiation is
consistent with evidence from a recent study by Schlichting
et al'®. In their study, subjects learned associations between pairs
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of object images, with some pairs containing a common object
(for example, an AB pair and a BC pair contain a common B
element). fMRI activity patterns corresponding to the individual
event elements (A, B, C) were measured pre- and post learning.
They found that, within the posterior hippocampus, learning
produced a relative differentiation of activity patterns
corresponding to A and C elements that shared a common B
element. This observation is consistent with our finding of
reduced scene pair difference scores in the Same Face condition,
providing converging evidence that, at least in some contexts,
linking events to a common outcome will paradoxically drive
corresponding hippocampal representations apart.

Despite some consistency across studies, our findings and
paradigm differ from the study by Schlichting et al.'® in several
important ways. First, here we specifically selected pairs of images
with high perceptual and semantic similarity (scene pairmates)
and we confirmed, via our post-scan scene-object learning test,
that this similarity between pairmates produced memory
interference errors. We also showed that in our baseline (No
Face) condition, scene pairmates were represented as more
similar than nonpairmate scenes in the hippocampus. This
baseline representational similarity sharply contrasts with the
end-state of learning: either an elimination (the Different Face
condition) or a complete reversal of baseline similarity (the Same
Face condition). Thus, we specifically show that hippocampal
representations of highly similar and confusable events become
differentiated with learning. Indeed, the degree of event similarity
may be a critical factor in determining the degree of
differentiation that occurs'®>. Our learning manipulation also
differed from the study by Schlichting et al.!® in that we directly
manipulated  behavioural ~discrimination demands. This
manipulation afforded the critical insight that hippocampal
overlap decreased as much or more when discrimination
demands were absent, relative to present. Finally, as we detail
below, a critical and novel aspect of the present study is that we
directly related the overlap of individual hippocampal
representations to subsequent behavioural expressions of
memory interference.

Several findings suggest a critical role for the hippocampus in
disambiguating similar memories. For example, prior studies have
shown that hippocampal lesions disproportionately impair
perceptual discrimination in rodents when displays contain many
items*2, when item locations are similar*3, or when similar items
are introduced before or after learning**. Likewise, human
patients with medial temporal lobe damage exhibit heightened
susceptibility to memory interference*>%, and fMRI measures of
hippocampal activity during learning have been associated with
reduced memory interference?’. A novel element of the present
study, however, is that we related interference between individual
memories to the overlap of their hippocampal activity patterns.
This finding provides critical support for the hypothesis that
overlap among hippocampal representations is related to memory
interference. Moreover, it provides crucial validation that the
learning-induced reductions in representational overlap that we
observed carried a functional consequence.

Although we show that hippocampal differentiation predicted
memory interference, it is unlikely that it was the only influence
on behaviour. Indeed, although representational overlap was
lowest in the Same Face condition, behavioural performance was
best in the Different Face condition. Thus, a factor other than
hippocampal differentiation is required to explain the better
performance in the Different Face condition. Post-experiment
debriefings revealed that many subjects utilized explicit learning
strategies that may have influenced performance. In particular,
most subjects (13/18) reported integrating scene-face associations
into subsequent scene-object associations. This strategy would be

helpful in the Different Face condition because it would add a
differentiating element (distinct faces) to the overlapping scene—
object associations. However, it would not be helpful in the Same
Face condition because it would add a common element (the
same face) to the overlapping scene-object associations. As an
indirect test of this idea, we probed for face reactivation during
the scanned scene-viewing task. Indeed, there was modest
evidence for face reactivation within parietal cortex*®
(Supplementary Fig. 6a,b). Moreover, individual differences in
parietal face reactivation were positively related to subsequent
scene-object learning in the Different Face condition, but not in
the Same Face condition (Supplementary Fig. 7), consistent with
our prediction. Ultimately, it is likely that behaviour was
determined by multiple factors, but explicit integration of
scene—face and scene-object associations is at least one factor
that may account for better overall performance in the Different
Face condition than the Same Face condition. Importantly,
however, this strategy was dissociable from the influence that
hippocampal pattern differentiation had on subsequent learning.

In summary, our findings reveal experience-dependent changes
in hippocampal representations that specifically exaggerate the
difference between similar events. These changes are highly
selective to the hippocampus and are triggered by event similarity
during learning, not behavioural discrimination demands. Finally,
we show that reduced overlap among hippocampal representa-
tions protects memories from interference during subsequent
learning.

Methods

Subjects. Twenty-three right-handed native English speakers (19-30 years old, 6
males) participated in the experiment after giving written informed consent to
procedures approved by the New York University Institutional Review Board.
Three subjects were withdrawn from the experiment due to discomfort or for
failing to comply with instructions. Two more participants were excluded from
data analysis due to excessive head motion or sleepiness. This yielded a final data
set of 18 subjects. This sample size is consistent with similar fMRI studies in the
field and was determined before data collection.

Stimuli. The learning tasks involved 72 non-famous scene images, 36 non-famous
male face images and 72 everyday object images. All images were in colour. The 72
scene images consisted of 36 pairs of perceptually and semantically similar scenes
(pairmates), with an equal number of indoor and outdoor pairs. For each subject,
12 scene pairs were randomly assigned to each of three learning conditions (No
Face, Different Face and Same Face; Fig. 1), while balancing for scene subcategory
within condition. There was no pairmate structure for faces or objects. For each
subject, 24 faces were randomly assigned to the scenes from the Different Face
condition and the remaining 12 faces to the scene pairs from the Same Face
condition. Finally, 24 objects were randomly assigned to the scenes from each
learning condition for each subject. Note: all figures contain public domain images
representative of the stimuli used in the experiment, but not identical to them.
Scene, face and object stimuli used in the experiment can be downloaded at
https://dx.doi.org/10.6084/m9.figshare.2087638.

Stimuli for the functional localizer were drawn from a published stimulus sef
and consisted of scrambled images and face, scene (house and corridor) and object
(car and guitar) images on phase-scrambled backgrounds. All images were
greyscale, and face, scene and object images varied in size, position and viewpoint.

49

Experimental procedure. The experiment consisted of an associative learning task
divided across 2 days. We designed the learning task as a modified version of the
AB-AC task commonly used to study memory interference. On day 1, subjects
learned 24 Different Face and 24 Same Face scene—face associations to a 100%
criterion through interleaved study and test. Subjects were told that their goal was
to learn the face that was associated with each scene but were not informed that
scenes existed in pairs or that some scenes shared a face associate. During study
trials, subjects were shown the scene (1,500 ms) and then its associated face
(1,500 ms) after a 500 ms delay. Subjects were instructed to intentionally encode
each scene-face pair during study trials, but no responses were required. During
test trials, scene cues (1,500 ms) were followed by a set of three faces, from which
subjects had 5,000 ms to select the target face. After a response was made or time
had elapsed, feedback was provided by showing the target face alone for 1,000 ms.
For scenes from the Different Face condition, the three face options included the
target face, the pairmate foil (face associated with the cue’s pairmate) and a ran-
domly chosen nonpairmate foil (face associated with a nonpairmate scene) from
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the Different Face condition. For scenes from the Same Face condition, the three
face options included the target face, and two randomly chosen nonpairmate foils
from the Same Face condition. To start the learning session, half of the Same Face
scene pairs and half of the Different Face scene pairs were selected and the cor-
responding scene—face associations (24 trials) were studied in random order and
then tested in random order. The remaining half of the associations were then
studied and tested. This constituted the first study-test cycle. A second study-test
cycle was completed using an identical procedure, but with a different random
grouping of associations into halves. This constituted the second study-test cycle.
Nonpairmate foils for test trials were always selected from the set of stimuli pre-
sented in the immediately preceding study block. After the two study-test cycles,
subjects completed at least four additional test blocks with feedback. In each test
block, all scene—face associations (48 trials) were tested in random order. If subjects
did not achieve 100% accuracy in the last test block, additional test blocks were
completed until 100% accuracy. Thus, on the first day subjects were tested on each
association a minimum of six times. It should also be noted that under this pro-
cedure, pairmate associations were learned in an interleaved, not blocked, fashion.
Separately in an exposure phase, all scenes (including those in the No Face con-
dition) were viewed eight times in a visual target detection task with no learning
demands. In this task, scenes appeared on the screen for 500 ms each and subjects
indicated as quickly as possible when an inverted scene was presented.

At the start of day 2, subjects were tested on every Same Face and Different Face
association at least twice (once per block, as at the end of day 1) and until 100%
accuracy was achieved. Subjects then participated in another round of the exposure
task, where all scenes (including No Face scenes) were viewed eight times.
Importantly, at no point during the scene-face learning or exposure tasks were
scene pairmates simultaneously presented—thus, there was never an opportunity
for perceptual discrimination.

Next, subjects participated in an fMRI scanning session. In an event-related
design, subjects viewed all scenes between 8 and 10 times each while maintaining
fixation and performing a cover task of detecting infrequent red crosses (8.33% of
trials). Each fMRI run consisted of the 72 scenes as well as 24 null-fixation trials
(18 interleaved, 3 lead in, and 3 lead out). Each trial was 4,000 ms long, with the
stimulus presented centrally on a grey background for 500 ms followed by a
3,500 ms intertrial interval. Randomly interleaved null trials provided jitter. For
stimulus presentation purposes, scene stimuli were divided into two sets of 36
images by splitting all scene pairs and assigning each pairmate to one of two sets.
For each run, stimulus presentation order was randomized within set, and the
order of the sets was counterbalanced. Thus, every run contained one presentation
of every scene stimulus, with scene pairmates always presented in different halves
of the run. Presentation orders were not repeated across subjects or runs. Subjects
also performed a separate functional localizer task that included 6 s blocks of scene,
face, object and scrambled stimuli presented at 2 Hz (ref. 49). Stimuli were
displayed on a projector at the back of the scanner bore, which subjects viewed
through a mirror attached to the head coil. Subjects made responses on an MR-
compatible button box.

After scanning, subjects learned 72 unique scene-object associations by
completing three study-test cycles. Trial timing was identical to that of scene—face
learning but there was no feedback on test trials. On test trials, subjects were cued
with a scene and chose from three objects: the target, the pairmate foil, and a
randomly selected nonpairmate foil from the same condition as the scene cue. For
all three study-test cycles, the 72 associations were studied and tested in sets of 24
trials, each of which were balanced by condition. For each set of 24 trials, a
balanced number of scene pairs from each of the three conditions were randomly
selected, and the corresponding associations were studied in random order and
then tested in random order. This procedure was identical for study—test cycles two
and three, but with different random assignments of stimuli to each set of 24 trials.
As in scene—face learning, nonpairmate foils for test trials were always selected
from the set of stimuli in the immediately preceding study round.

See also Fig. 1 and Supplementary Fig. 1.

Image acquisition and preprocessing. We acquired all images on a 3T Siemens
Allegra MRI system. Functional data were acquired with a T2*-weighted echo-
planar imaging sequence with partial coverage (repetition time = 2,000 ms, echo
time = 30 ms, flip angle = 82°, 34 slices, 2.5 X 2.5 x 2.5 mm voxels) and an eight-
channel occipital surface coil. We confirmed via pilot fMRI scans that the occipital
surface coil yielded enhanced sensitivity extending to posterior medial temporal
lobe regions. Oblique coronal slices were aligned perpendicular to the calcarine
sulcus at the occipital pole and extended anteriorly covering ventral temporal
cortex and the medial temporal lobe. We also acquired a whole-brain high-reso-
lution T1-weighted magnetization-prepared rapid acquisition gradient echo ana-
tomical volume (1 X 1 x 1 mm voxels).

FSL* was used for functional image preprocessing. The first six volumes of
each functional run were discarded to allow for T1 stabilization. To correct for
head motion, each time series was realigned to its middle volume. The localizer
data were spatially smoothed using a 6 mm full-width at half maximum gaussian
kernel. Data from the main experiment were not spatially smoothed. All data were
high-pass filtered using gaussian-weighted least squares straight line fitting with
0 =64.0s. Timepoints with motion relative to the previous volume greater than
half the width of a voxel (1.25 mm) were identified and excluded from further
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analysis. Freesurfer”! was used to segment the grey-white matter boundary and
construct a model of the cortical surface from the high-resolution anatomical
image.

fMRI general linear model (GLM) analyses. All fMRI analyses were performed
in subjects’ native space. Using FSL, we conducted a voxelwise analysis of each
subject’s unsmoothed timeseries data from the main experiment with a model that
included a regressor of interest for each of the 72 scene stimuli. These regressors
were constructed as impulses and were then convolved with a canonical double-
gamma hemodynamic response function. Six realignment parameters were inclu-
ded as regressors of no interest to control for motion confounds. Run-level models
were estimated using gaussian least squares with local autocorrelation correction
(pre-whitening) and then entered into a fixed-effects model. This procedure pro-
duced t-maps representing the activation elicited by each scene relative to baseline
for each subject. No normalization to a group template was performed.

To analyse the localizer data, we constructed a model with three regressors of
interest corresponding to the three visual categories (scene, face, object). These
regressors were constructed as boxcar functions onsetting with the first image of a
category block and lasting for the duration of the block. Realignment parameters
were included and the model was estimated as described above but using smoothed
timeseries data. A linear contrast of scenes greater than faces and objects was used
to obtain subject-specific estimates of scene sensitivity for each voxel.

fMRI pattern similarity analyses. Neural similarity between scenes was oper-
ationalized as the Fisher z-transformed Pearson correlation between t-maps.
Because scene pairmates were presented in two blocked sets (i.e., a given scene was
always presented in a different half of the run than its pairmate; see Experimental
procedures), we only computed across-set correlations between our 72 scenes. This
produced a 36 x 36 matrix, with the diagonal containing pairmate similarity values
and all other cells containing nonpairmate similarity values. Cells corresponding to
across-condition nonpairmate similarity values were not analysed. Scene pair dif-
ference scores were computed by taking the similarity of two pairmates and sub-
tracting from it the mean similarity of each pairmate to all other nonpairmate
scenes from the same condition (Fig. 2a). Thus, scene pair difference scores reflect
the similarity of two pairmates relative to their similarity to other scenes from the
same condition.

To test the relationship between scene-object memory and scene pair difference
score, we used mixed-effects logistic regression. We relied on this method because
it allows us to model behaviour as a function of several predictors, accounts for the
correlations inherent in repeated measures, and handles unequal bins size and
missing data gracefully. We evaluated each subject’s scene-object memory
behaviour separately for each scene pair in the Same Face and Different Face
conditions and each of the three scene-object test cycles. For each scene-object test
cycle, we labelled individual scene pairs as being associated with ‘correct’ test
performance or ‘interference.” We labelled a scene pair ‘correct’ if the subject
selected the correct object for both scene pairmates and thus avoided interference
between the pairmates’ associations. We labelled a scene pair as corresponding to
‘interference’ if the subject made either one or two interference errors—that is, by
selecting the pairmate foil for one or both of the pairmates (Fig. 1c). All other scene
pairs (for example, pairs for which subjects selected nonpairmate foils for both
scenes) were excluded from analysis.

fMRI classification analyses. Pattern classification analyses were performed
using LIBLINEAR®? L2-regularized logistic regression models from Sci-kit Learn?
with the default regularization parameter of 1. Every pattern was z-scored across
voxels before being submitted to analysis.

For classifier-based face reactivation analyses (Supplementary Figs 6a and 7), a
second general linear model analysis was performed on each subject’s localizer data,
with one regressor assigned to each of the 12 face, 12 scene and 12 object blocks. This
yielded 12 face and 12 scene patterns of interest. For each subject, a classifier was
trained to discriminate faces from scenes using these 24 training examples. We then
used this classifier to predict the category of each of the 72 scenes from the main
experiment from their estimated neural patterns. For every scene this yielded a
prediction (face or scene) as well as a probability estimate for each category. Face
evidence was defined as the logit-transformed probability of the face category.

Regions of interest. ROIs were produced for each subject in native space using a
combination of automatic segmentation and voxel selection from the localizer data.
We used Freesurfer to automatically define bilateral anatomical ROIs in each
subject’s native space, including the hippocampus, medial ventral temporal cortex
(parahippocampal gyrus and collateral sulcus), and early visual cortex (retinotopic
area V1). We manually ensured that hippocampal segmentation was successful.
Then, we used data from each subject’s visual category localizer to further select
scene-preferring voxels (scenes > faces and objects) from the hippocampus (z>1)
and medial ventral temporal cortex (z>3). This yielded a scene-preferring hip-
pocampal ROI (mean = 128 voxels) and a PPA ROI (mean =271 voxels) for each
subject. We chose a lower threshold in the hippocampus than in ventral temporal
cortex because the mean of the scene preference distribution in the hippocampus is
lower, and a lower threshold was necessary to yield enough voxels to analyse.
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Statistics. Repeated measures ANOVAs and two-tailed paired ¢-tests were used to
assess differences in scene pair difference score across conditions and ROIs.
Normality and sphericity of data were confirmed using Shapiro-Wilk and
Mauchly’s tests. In the case of normality violations, nonparametric Wilcoxon
signed-rank tests with continuity correction were used in place of t-tests and
Friedman’s test in place of one-way repeated measures ANOVA. Mixed-effects
logistic regression models were used to assess the relationship between scene pair
difference score and subsequent scene-object learning, and were implemented in
the Ime4 package for R (http://Ime4.r-forge.r-project.org). All models were con-
structed with random intercepts for each subject and the maximal random slope
structure for within-subject factors®*. The significance of predictors was assessed
using likelihood ratio tests on nested models. Parameter estimates and s.e. for the
predictors are also reported.
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